To revisit this article, visit My Profile, then View saved stories .

  • Backchannel
  • Wired World
  • Artificial Intelligence
  • Newsletters
  • Wired Insider

Klint Finley Joanna Pearlstein Simon Hill

The WIRED Guide to 5G

The future depends on connectivity. From artificial intelligence and self-driving cars , to telemedicine and mixed reality, to as yet undreamed technologies, all the things we hope will make our lives easier, safer, and healthier require high-speed, always-on internet connections. To keep up with the demand, the mobile industry introduced 5G —so named because it's the fifth generation of wireless networking technology.

5G brings faster speeds of up to 10 gigabits per second (Gbps) to your phone. That's fast enough to download a 4K movie in 25 seconds. But 5G is not just about faster connections. It also delivers lower latency and allows for more devices to be connected simultaneously.

As the fifth generation of cellular networks, 5G is a global wireless standard. All cellular networks send encoded data through radio waves. Radio waves have different frequencies and are divided into bands. Previous generations, like 4G, operated on low- and mid-band frequencies, but 5G can operate on low-, mid-, and high-band (also known as millimeter wave) frequencies. Lower frequencies can travel farther and penetrate through obstacles but offer relatively low speeds, while higher frequencies are much faster but have a limited range and struggle to pass through objects.

While 5G opens up a swathe of unused radio frequencies at the high end of the spectrum, it also encompasses new technologies and techniques for combining chunks of spectrum that are already in use. At the low end, 5G looks and feels very much like 4G.

Carriers have been building their 5G networks for a few years now, but they have adopted different approaches. All the carriers began by building 5G atop their existing networks, which provided lots of connectivity, but not at the high speeds associated with 5G. More recently, they have started building out new high-band 5G networks, but these are largely confined to cities or specific venues within cities. You can get a broad overview by using Ookla’s 5G map .

Verizon offers low-band 5G across the country, labeled as 5G Nationwide on its coverage map . Verizon offers mid-band 5G in many urban areas and high-band 5G in many cities, but the mid- and high-band coverage are lumped together and labeled 5G Ultra Wideband or 5G UW.

AT&T also offers low-band 5G coverage across much of the country and mid-band coverage in some cities, both labeled simply as 5G on its coverage map . AT&T’s high-band 5G is currently limited to a selection of venues, like stadiums, and is labeled as 5G+. Early in its 5G efforts, AT&T marketed its spiffed-up LTE network as "5G E" and was rebuked by the National Advertising Review Board for misleading customers.

T-Mobile offers low-band 5G across the country, labeled as 5G Extended Range on its coverage map . Its mid- and high-band 5G is labeled as 5G Ultra Capacity.

Ultimately, 5G availability and speeds are variable because 5G service is offered in three bands. Low-band, which generally operates below 1 GHz, can reach speeds of 250 Mbps. The trade-off for low-band’s comparatively slower speeds is a broad reach, which means carriers can leave more distance between towers using this kind of equipment.

Analysts call the mid-band of the 5G spectrum the sweet spot, as it has a broad geographic reach and is faster than low-band. Mid-band operates between 1 and 6 GHz and can achieve speeds up to 1 Gbps.

But to reach the top speeds associated with 5G, carriers need millimeter-wave (or mmWave) technology, which takes advantage of the high end of the wireless spectrum, operating at 20 GHz and up. mmWave can enable multi-gig speeds, but millimeter-wave signals are less reliable over long distances and easily disrupted by obstacles like trees, people, and even rain. To make it practical for mobile use, carriers must deploy huge numbers of small access points in cities, instead of relying on a few big cell towers as they do today.

Figuring out whether 5G is available for you , and in what form, requires a bit of detective work, but you will also need a device capable of handling a 5G signal.

Anyone wishing to take advantage of these new 5G networks needs a capable device. Most major phone makers offer 5G handsets now, but, as we’ve seen, 5G is an umbrella term. All 5G phones have low- and mid-band support (often labeled “sub-6,” as they operate at frequencies of 6 GHz and lower), but not all 5G phones are capable of high-band connections. If you want a smartphone that can take advantage of high-band (mmWave) networks, look for mmWave support.

You can find mmWave support in high-end phones like Apple's iPhone 14 Pro , Google Pixel 7 Pro , and the Samsung Galaxy S22 in the US. It’s worth noting that these same models are often sold without mmWave support in other countries.

Much of the buzz around 5G is focused on its potential. Since smartphones connected to 4G LTE can already stream high-quality video, you may be wondering what 5G brings to the table for regular folks. Aside from faster download speeds, lower latency benefits multiplayer and cloud gaming by boosting responsiveness. And 5G's higher capacity for multiple devices to be connected without issue also helps to keep us all online when we are part of a crowd, whether it’s a packed concert or a football game.

The stability and speed of 5G also promise improvements for driverless cars, remote-piloting drones, and anywhere else where response time is crucial. While tangible benefits today are limited, there is enormous potential for more cloud computing services, augmented reality experiences, and whatever comes next. But a real killer 5G app for consumers remains elusive. 

The US has been keen to claim a leadership role in worldwide 5G deployment, but so far it hasn’t fully succeeded. China-based Huawei is the world’s leading maker of 5G network equipment, and while its equipment is deployed widely, the company has faced scrutiny and even bans from Western nations for its alleged ties to the Chinese government. Other companies that make 5G equipment, like Nokia, Ericsson, and Samsung— none of which, notably, are headquartered in the US —may have benefited from the bans.

From a speed perspective, the US doesn’t appear in the top 15 nations, according to the UK-based research firm Opensignal , which found that South Korea had the top 5G download speed at 432.7 Mbps, followed by Malaysia, Sweden, Bulgaria, and the United Arab Emirates. Where the US did score highly was in 5G availability, with a score of 25.2 percent, meaning users spent over one-quarter of their time with an active 5G connection—an impressive result for a country the size of the US, and a sign that the rollout is gathering pace.

Tech Job Interviews Are Out of Control

Lauren Goode

Here Are the Secret Locations of ShotSpotter Gunfire Sensors

Dhruv Mehrotra

17 Tips to Take Your ChatGPT Prompts to the Next Level

David Nield

Google’s ‘Woke’ Image Generator Shows the Limitations of AI

David Gilbert

What is 5G The Complete Guide to When Why and How

The first generation of mobile wireless networks, built in the late 1970s and 1980s, was analog. Voices were carried over radio waves unencrypted , and anyone could listen in on conversations using off-the-shelf components. The second generation, built in the 1990s, was digital—which made it possible to encrypt calls, make more efficient use of the wireless spectrum, and deliver data transfers on par with dialup internet or, later, early DSL services. The third generation gave digital networks a bandwidth boost and ushered in the smartphone revolution.

(The wireless spectrum refers to the entire range of radio wave frequencies, from the lowest frequencies to the highest. The US Federal Communications Commission, or FCC, regulates who can use which ranges, or “bands,” of frequencies and for what purposes, to prevent users from interfering with each other’s signals. Mobile networks have traditionally relied mostly on low- and mid-band frequencies that can easily cover large distances and travel through walls. But those are now so crowded that carriers have turned to the higher end of the radio spectrum.)

The first 3G networks were built in the early 2000s, but they were slow to spread across the US. It's easy to forget that when the original iPhone was released in 2007, it didn't even support full 3G speeds, let alone 4G. At the time, Finnish company Nokia was still the world’s largest handset manufacturer, thanks in large part to Europe’s leadership in the deployment and adoption of 2G. Meanwhile, Japan was well ahead of the US in both 3G coverage and mobile internet use.

But not long after the first 3G-capable iPhones began sliding into pockets in July 2008, the US app economy started in earnest. Apple had just launched the App Store that month, and the first phones using Google's Android operating system started shipping in the US a few months later. Soon smartphones, once seen as luxury items, were considered necessities, as Apple and Google popularized the gadgets and Facebook gave people a reason to stay glued to their devices. Pushed by Apple and Google and apps like Facebook, the US led the way in shifting to 4G, leading to huge job and innovation growth as carriers expanded and upgraded their networks. Meanwhile, Nokia and Japanese handset makers lost market share at home and abroad as US companies set the agenda for the app economy.

What is 5G The Complete Guide to When Why and How

There's more to 5G than mobile phones; 5G technologies will also serve a great many devices in near real time. That will be crucial as the number of internet-connected cars, environmental sensors, thermostats, and other gadgets accelerates in the coming years.

5G is expected to help autonomous cars communicate not only with one another—a kind of “Hey, on your left!” set of exchanges—but also, someday, with roads, lights, parking meters, and signals. And 5G’s low latency promises to better enable remote surgeries, allowing physicians in one location to manipulate network-connected surgical instruments thousands of miles away (a capability the pandemic has made even more desirable). Medical providers may also be able to rely on 5G to rapidly transmit high-resolution images for use in diagnosis and treatment.

Manufacturers can use 5G networks to monitor production lines remotely and maintain videofeeds of their factory floors, or to feed data to workers wearing augmented reality glasses. Some companies are licensing their own bit of 5G spectrum and are replacing Wi-Fi networks with private 5G networks .

Even though 5G remains far from universally available, the telecom industry is already looking forward to the next big thing : 6G—the technology that will take advantage of areas of the wireless spectrum above 100 GHz.

What is 5G The Complete Guide to When Why and How

  • Why Airlines Are Fighting the 5G Rollout Airline companies want more time to prepare for the potential impact of 5G frequencies on crucial safety equipment.
  • Why Almost No One Is Getting the Fastest Form of 5G A new report shows that US mobile customers are tapping into the technology’s speediest networks less than 1 percent of the time.
  • Choosing the Wrong Lane in the Race to 5G FCC Chair Jessica Rosenworcel argues that by focusing on millimeter-wave technology, the US is taking the wrong path to 5G.
  • How the Sprint/T-Mobile Merger changes the mobile landscape T-Mobile gained valuable 5G wireless spectrum as part of the deal.

Last updated December 2022.

Enjoyed this deep dive? Check out more WIRED Guides .

You Might Also Like …

📨 Make the most of chatbots with our AI Unlocked newsletter

Read WIRED’s exclusive 6-part excerpt of 2054, A Novel

Confessions of an AI clickbait kingpin

Polyamory has entered the chat

This website tracked hate crimes in India . Then the government took it offline

YouTube, Discord, and Lord of the Rings led police to a teen accused of a swatting spree

🔌 Charge right into travel season with the best travel adapters , power banks , and USB hubs

An AT&T Outage Is Wreaking Havoc on US Cellular Networks

Brian Barrett

Intel's AI Reboot Is the Future of US Chipmaking

Will Knight

Google Rebrands Its AI Chatbot as Gemini to Take On ChatGPT

Paresh Dave

The Skilled Workers Training AI to Take Their Jobs

Morgan Meaker

Amazon’s Cloud Boss Likens Generative AI Hype to the Dotcom Bubble

Chris Baraniuk

Here’s the Thing AI Just Can’t Do

Steven Levy

  • Skip to content
  • Skip to search
  • Skip to footer

What Is 5G?

5G is the fifth generation of cellular technology.

5G is the fifth generation of cellular technology. It is designed to increase speed, reduce latency, and improve flexibility of wireless services.

  • Watch: Cisco 5G Network Architecture (1:24)
  • What Are 5G Speeds?

Contact Cisco

  • Get a call from Sales

Call Sales:

  • 1-800-553-6387
  • US/CAN | 5am-5pm PT
  • Product / Technical Support
  • Training & Certification

What is 5G technology?

5G technology has a theoretical peak speed of 20 Gbps, while the peak speed of 4G is only 1 Gbps. 5G also promises lower latency, which can improve the performance of business applications as well as other digital experiences (such as online gaming, videoconferencing, and self-driving cars). 

While earlier generations of cellular technology (such as 4G LTE) focused on ensuring connectivity, 5G takes connectivity to the next level by delivering connected experiences from the cloud to clients. 5G networks are virtualized and software-driven, and they exploit cloud technologies.

The 5G network will also simplify mobility, with seamless open roaming capabilities between cellular and Wi-Fi access. Mobile users can stay connected as they move between outdoor wireless connections and wireless networks inside buildings without user intervention or the need for users to reauthenticate. 

The new Wi-Fi 6 wireless standard (also known as 802.11ax) shares traits with 5G, including improved performance. Wi-Fi 6 radios can be placed where users need them to provide better geographical coverage and lower cost. Underlying these Wi-Fi 6 radios is a software-based network with advanced automation.

5G technology should improve connectivity in underserved rural areas and in cities where demand can outstrip today's capacity with 4G technology. New 5G networks will also have a dense, distributed-access architecture and move data processing closer to the edge and the users to enable faster data processing.

How does 5G technology work?

5G technology will introduce advances throughout network architecture. 5G New Radio, the global standard for a more capable 5G wireless air interface, will cover spectrums not used in 4G. New antennas will incorporate technology known as massive MIMO (multiple input, multiple output), which enables multiple transmitters and receivers to transfer more data at the same time. But 5G technology is not limited to the new radio spectrum. It is designed to support a converged, heterogeneous network combining licensed and unlicensed wireless technologies. This will add bandwidth available for users.

5G architectures will be software-defined platforms, in which networking functionality is managed through software rather than hardware. Advancements in virtualization, cloud-based technologies, and IT and business process automation enable 5G architecture to be agile and flexible and to provide anytime, anywhere user access. 5G networks can create software-defined subnetwork constructs known as network slices. These slices enable network administrators to dictate network functionality based on users and devices.

5G also enhances digital experiences through machine-learning (ML)-enabled automation. Demand for response times within fractions of a second (such as those for self-driving cars) require 5G networks to enlist automation with ML and, eventually, deep learning and artificial intelligence (AI). Automated provisioning and proactive management of traffic and services will reduce infrastructure cost and enhance the connected experience.

When will 5G be available and how will it expand?

5G service is already available in some areas in various countries. These early-generation 5G services are called 5G non-standalone (5G NSA). This technology is a 5G radio that builds on existing 4G LTE network infrastructure. 5G NSA will be faster than 4G LTE. But the high-speed, low-latency 5G technology the industry has focused on is 5G standalone (5G SA). It should start becoming available by 2020 and be commonly available by 2022.

What is the real-world impact of 5G technology?

5G technology will not only usher in a new era of improved network performance and speed but also new connected experiences for users.

In healthcare, 5G technology and Wi-Fi 6 connectivity will enable patients to be monitored via connected devices that constantly deliver data on key health indicators, such as heart rate and blood pressure. In the auto industry, 5G combined with ML-driven algorithms will provide information on traffic, accidents, and more; vehicles will be able to share information with other vehicles and entities on roadways, such as traffic lights. These are just two industry applications of 5G technology that can enable better, safer experiences for users.

What is the Cisco contribution to 5G technology?

Cisco provides this automated, cloud-to-client, software-based network for 5G. Cisco ONE architecture is a cloud-first, software-defined architecture that spans enterprise and service provider deployments seamlessly--this includes open roaming between cellular and Wi-Fi, including the new Wi-Fi 6 (also known as 802.11ax), which shares several attributes with 5G architecture.

  • 5G Network Architecture for Service Providers

Get started

Cisco products and solutions related to 5G and Wi-Fi 6.

  • Cisco Service Provider Mobility Solutions
  • Tap into 5G monetization
  • Cisco 5G redefining your network
  • 5 things to know about Wi-Fi 6 and 5G
  • Wi-Fi 6 (802.11ax) solution
  • Technology trends

Cisco 5G news

Read more about 5G from Cisco.

  • What Is a Private 5G Network?
  • How is 5G different from 4G?
  • Reimagining the Mobile Network in 5G
  • Latest 5G news releases

introduction about 5g technology

What is 5G?

5G cell tower

Fifth time’s the charm: 5G—or fifth-generation wireless technology— is powering the Fourth Industrial Revolution . Sure, 5G is faster than 4G. But 5G is more than just (a lot) faster: the connectivity made possible with 5G is significantly more secure and more stable than its predecessors. Plus, 5G enables data to travel from one place to another with a significantly shorter delay between data submission and arrival—this delay is known as latency.

Here are a few big numbers from the International Telecommunications Union . 5G networks aim to deliver:

  • 1,000 times higher mobile data volume per area
  • 100 times the number of connected devices
  • 100 times higher user data rate
  • ten times longer battery life for low-power massive-machine communications
  • five times reduced end-to-end latency

Here’s how it works: like all cellular networks, the service area of 5G networks is divided into geographic sub-areas called cells. Each cell has local antennae, through which all wireless devices in the cell are connected to the internet and telephone network via radio waves. To achieve its very high speeds, 5G utilizes low- and midbands on the radio spectrum  (below six gigahertz), as well as whole new bands of the radio spectrum . These are so-called “millimeter waves,” broadcast at frequencies between 30 and 300 gigahertz, which have previously been used only for communication between satellites and radar systems.

Cell phone companies began deploying 5G in 2019. In the United States, 5G coverage is already available in many areas . And, while previous generation 2G and 3G technology is still in use, 5G adoption is accelerating: according to various predictions, 5G networks will have billions of subscribers by 2025.

But 5G can do more than enable faster loading of cat videos. This new speed and responsiveness—and the connectivity solutions it makes possible—is poised to transform a wide variety of industries.

Learn more about our Technology, Media & Telecommunications Practice .

How will 5G be used?

To date, 5G will enable four key use-case archetypes , which will require 5G to deliver on its promise of evolutionary change in network performance. They are:

  • Enhanced mobile broadband . The faster speed, lower latency, and greater capacity 5G makes possible could enable on-the-go, ultra-high-definition video, virtual reality, and other advanced applications.
  • Internet of Things (IoT) . Existing cellular networks are not able to keep up with the explosive growth in the number of connected devices, from smart refrigerators to devices monitoring battery levels on manufacturing shop floors. 5G will unlock the potential of IoT by enabling exponentially more connections at very low power.
  • Mission-critical control . Connected devices are increasingly used in applications that require absolute reliability, such as vehicle safety systems or medical devices. 5G’s lower latency and higher resiliency mean that these time-critical applications will be increasingly reliable.
  • Fixed wireless access . The speeds made possible by 5G make it a viable alternative to wired broadband in many markets, particularly those without fiber optics.

How might 5G and other advanced technologies impact the world?

If 5G is deployed across just four commercial domains—mobility, healthcare, manufacturing, and retail—it could boost global GDP by up to $2 trillion by 2030. Most of this value will be captured with creative applications of advanced connectivity.

Here are the four commercial domains with some of the largest potential to capture higher revenues or cost efficiencies:

  • Connectivity will be the foundation for increasingly intelligent mobility systems, including carsharing services, public transit, infrastructure, hardware and software, and more. Connectivity could create new revenue streams through preventive maintenance, improved navigation and carpooling services, and personalized “infotainment” offerings.
  • Devices and advanced networks with improved connectivity could transform the healthcare industry. Seamless data flow and low-latency networks could mean better robotic surgery. AI-powered decision support tools can make faster and more accurate diagnoses, as well as automate tasks so that caregivers can spend more time with patients. McKinsey analysis estimates that these use cases together could generate up to $420 billion in global GDP impact by 2030 .
  • Low-latency and private 5G networks can power highly precise operations in manufacturing and other advanced industries . Smart factories powered by AI , analytics, and advanced robotics can run at maximum efficiency, optimizing and adjusting processes in real time. New features like automated guided vehicles and computer-vision-enhanced bin picking and quality control require the kind of speed and latency provided by high-band 5G. By 2030, the GDP impact in manufacturing could reach up to $650 billion .
  • Retailers can use technology like sensors, trackers, and computer vision to manage inventories, improve warehouse operations, and coordinate along the supply chain. Use cases like connectivity-enhanced in-store experiences and real-time personalized recommendations could boost global GDP up to $700 billion by 2030 .

The use cases identified in these commercial domains alone could boost global GDP by up to $2 trillion by 2030 . The value at stake could ultimately run trillions of dollars higher across the entire global economy.

Beyond industry, 5G connectivity has important implications for society. Enabling more people to plug into global flows of information, communication, and services could add another $1.5 trillion to $2 trillion to GDP . This stands to unlock greater human potential and prosperity, particularly in developing nations .

Learn more about our Technology, Media & Telecommunications  Practice.

What are advanced connectivity and frontier connectivity?

Advanced connectivity is propelled by the continued evolution  of existing connectivity technologies, as networks are built out and adoption grows. For instance, providers are upgrading existing 4G infrastructure with 5G network overlays, which generally offer improvements in speed and latency while supporting a greater density of connected devices. At the same time, land-based fiber optic networks continue to expand, enabling faster data connections all over the world.

Circular, white maze filled with white semicircles.

Introducing McKinsey Explainers : Direct answers to complex questions

On the other hand, frontier technologies like millimeter-wave 5G and low-earth-orbit satellite constellations offer a more radical leap forward . Millimeter-wave 5G is the ultra-fast mobile option, but comes with significant deployment challenges. Low-earth-orbit (LEO) satellites could deliver a breakthrough in breadth of coverage. LEO satellites work by beaming broadband down from space, bringing coverage to remote parts of the world where physical internet infrastructure doesn’t make sense for a variety of reasons. Despite the promise of LEO technology, challenges do remain, and no commercial services are yet available.

How are telecommunications players grappling with the transition to 5G?

5G promises better connectivity for consumers and organizations. Network providers, on the other hand, are resigned  to higher costs to deploy 5G infrastructure before they can reap the benefits. This cycle has happened before: with the advent of 4G, telcos in Europe and Latin America reported decreased revenues.

Given these realities, telecommunications players are working to develop their 5G investment strategies . In order to achieve the speed, latency, and reliability required by most advanced applications, network providers will need to invest in all network domains, including spectrum, radio access network infrastructure, transmission, and core networks. More specifically, operators will increasingly share more parts of the network, including towers, backhaul, and even spectrum and radio access, through so-called MOCN (Multi-Operator Core Network) or MORAN (Multi-Operator Radio Access Network) deals. This is a 5G-specific way for operators to cope with higher investment burdens at flat revenues.

Some good news: 5G technology is largely built on 4G networks, which means that mobile operators can simply evolve their infrastructure investment  rather than start from scratch. For instance, operators could begin by upgrading the capacity of their existing 4G network by refarming a portion of their 2G and 3G spectrum, thereby delaying investments in 5G. This would allow operators to minimize investments while the revenue potential of 5G remains uncertain.

How will telecommunications players monetize 5G in the B2C market?

The rise of 5G also presents an opportunity for telecommunications players to shift their customer engagement. As they reckon with the costs of 5G, they also must reimagine how to charge customers for 5G . The B2B 5G revolution is already under way; in the B2C market, the value proposition of 5G is less clear. That’s because there is no 5G use case compelling enough, at the present time, to transform the lives of people not heavily invested in gaming, for instance.

But despite the uncertainty, McKinsey has charted a clear path  for telecommunications organizations to monetize 5G in the B2C sector. There are three models telcos might pursue, which could increase average revenue per user by up to 20 percent:

  • Impulse purchases and “business class” plans . 5G technology will allow telcos to move away from standard monthly subscriptions toward flexible plans that allow for customers to upgrade network performance when and where they feel the urge. Business class plans could feature premium network conditions at all times. According to McKinsey analysis, 7 percent of customers  are already ready to use 5G boosters, and would use them an average of seven times per month if each boost cost $1.
  • Selling 5G-enabled experiences . The speeds and latency of 5G make possible streamlined and seamless experiences such as multiplayer cloud gaming, real-time translation, and augmented reality (AR) sports streaming. McKinsey research shows that customers are willing to pay  for these 5G-enabled experiential use cases, and more.
  • Using partnerships to deliver 5G-enabled experiences . When assessing customer willingness to pay for 5G cloud gaming, McKinsey analysis showed that 74 percent of customers  would prefer buying a 5G service straight from the game app rather than from their mobile provider. To create a seamless experience for customers, telcos could embed 5G connectivity directly into their partners’ apps or devices. This could greatly expand telecommunications organizations’ customer base.

How has COVID-19 impacted connectivity IoT?

For one thing, the pandemic has created the need for applications with the advanced connectivity that only 5G can provide. Among other things, 5G enables the types of applications that help leaders understand whether their workforces are safe and which devices have been connected to the network and by whom.

Advanced connectivity technologies like 5G also stand to enable remote healthcare , although, ironically, the pandemic has also eaten up the resources necessary to create the infrastructure to implement it.

During the pandemic, Industry 4.0 frontrunners have done very well. This illustrates the fact that digital first businesses are nimbler and better prepared to react to unforeseen challenges.

Learn more about our Healthcare Systems & Services  Practice.

How can advanced electronics companies and industrials benefit from 5G?

The 5G Internet of Things (IoT)  B2B market, and its development over the coming years, offer significant opportunities for advanced electronics organizations. 5G IoT refers to industrial use-case archetypes enabled by the faster, more stable, and more secure connectivity available with 5G. McKinsey analyzed the events surrounding the introduction of 4G and other technologies, looking for clues about how 5G might evolve in the industry.

We found that many companies will derive great value from 5G IoT, but it will come in waves . The first 5G IoT use-case archetypes to gain traction will be those related to enhanced mobile broadband, followed shortly thereafter by use cases for ultra-reliable, low-latency communication. Finally, use cases for massive machine-type communication will take several more years. The businesses best placed to benefit from the growth of 5G include mobile operators, network providers, manufacturing companies, and machinery and industrial automation companies.

The B2B sector is especially well placed to benefit from 5G IoT. The most relevant short-term opportunities for 5G IoT involve Industry 4.0 , or the digitization of manufacturing and other production processes. The Industry 4.0 segment will account for sales of about 22 million 5G IoT units by 2030, with most applications related to manufacturing.

In order to take advantage of the opportunity, advanced electronics companies should look now to revamping their strategies . In the short-term, they should focus on B2B cases that are similar to those now being deployed in the B2C sector. Looking ahead, they should shift their focus toward developing hardware and software tailored to specific applications. But expanding the business field is always something that should be done with great care and consideration.

How will 5G impact the manufacturing industry?

There are five potential applications that are particularly relevant  for manufacturing organizations:

  • Cloud control of machines . In the past, automation of machines in factories has relied on controllers that were physically installed on or near machines, which would then send information to computer networks. With 5G, this monitoring can in theory be done in the cloud, although these remain edge cases for now.
  • Augmented reality . Seamless AR made possible by 5G connectivity will ultimately replace standard operating procedures currently on paper or video. These will help shop-floor workers undertake advanced tasks without waiting for specialists.
  • Perceptive AI eyes on the factory floor . 5G will allow for live video analytics based on real-time video data streaming to the cloud.
  • High-speed decisioning. The best-run factories rely on massive data lakes to make decisions. 5G accelerates the decision-cycle time, allowing massive amounts of data to be collected, cleaned, and analyzed in close to real time.
  • Shop-floor IoTs . The addition of sensors to machines on factory floors means more data than ever before. The speeds made possible by 5G will allow for the operationalization of these new data.

Learn more about our Operations  Practice.

For a more in-depth exploration of these topics, see McKinsey’s Technology, Media & Telecommunications Practice. Also check out 5G-related job opportunities if you’re interested in working at McKinsey.

Articles referenced:

  • “ Unlocking the value of 5G in the B2C marketplace ,” November 5, 2021, Ferry Grijpink , Jesper Larsson, Alexandre Ménard , and Konstantin Pell
  • “ Connected world: An evolution in connectivity beyond the 5G revolution ,” February 20, 2020, Ferry Grijpink , Eric Kutcher , Alexandre Ménard , Sree Ramaswamy, Davide Schiavotto , James Manyika , Michael Chui , Rob Hamill, and Emir Okan
  • The 5G era: New Horizons for advanced electronics in industrial companies , February 21, 2020, Ondrej Burkacky , Stephanie Lingemann, Alexander Hoffmann, and Markus Simon
  • “ Five ways that 5G will revolutionize manufacturing ,” October 18, 2019, Enno de Boer , Sid Khanna , Andy Luse , Rahul Shahani , and Stephen Creasy
  • “ Cutting through the 5G hype: Survey shows telcos’ nuanced views ,” February 13, 2019, Ferry Grijpink , Tobias Härlin, Harrison Lung, and Alexandre Ménard
  • “ The road to 5G: The inevitable growth of infrastructure cost ,” February 23, 2018, Ferry Grijpink , Alexandre Ménard , Halldor Sigurdsson , and Nemanja Vucevic
  • “ Are you ready for 5G? ,” February 22, 2018, Mark Collins, Arnab Das, Alexandre Ménard , and Dev Patel

5G cell tower

Want to know more about 5G?

Related articles.

Connected world: A broader evolution beyond the 5G revolution

Connected world: An evolution in connectivity beyond the 5G revolution

Young woman locating direction with augmented reality technology on smartphone on street.

Unlocking the value of 5G in the B2C marketplace

Smart home symbol

What is the Internet of Things?

TK

What is 5G? Your questions answered

By Clare Duffy , CNN Business Illustrations by Leah Abucayan

Published March 6, 2020

What is 5G?

What is 5G?

5G is next generation wireless network technology that’s expected to change the way people live and work. It will be faster and able to handle more connected devices than the existing 4G LTE network, improvements that will enable a wave of new kinds of tech products. 5G networks began rolling out in the United States and around the world in 2018 and are still in their early days, but experts say the potential is huge.

Why 5G?

Companies are racing to have the fastest or largest 5G networks. And countries are competing to be the first to deploy fully functional, nationwide 5G. That’s because the benefits of the new technology are expected to fuel transformative new technologies , not just for consumers but also for businesses, infrastructure and defense applications.

Benefits of 5G?

Benefits of 5G?

Much of the hype around 5G has to do with speed. But there are other perks, too. 5G will have greater bandwidth, meaning it can handle many more connected devices than previous networks. That means no more spotty service when you’re in a crowded area. And it will enable even more connected devices like smart toothbrushes and self-driving cars. 5G will also reduce latency — the time it takes for a cell phone (or other connected device) to make a request from a server and get a response — to virtually zero. And it will make communication with cloud platforms (think Amazon Web Services and Microsoft Azure) faster and easier.

How does it work?

How does it work?

With 5G, signals run over new radio frequencies, which requires updating radios and other equipment on cell towers. There are three different methods for building a 5G network , depending on the type of assets a wireless carrier has: low-band network (wide coverage area but only about 20% faster than 4G), high-band network (superfast speeds but signals don’t travel well and struggle to move through hard surfaces) and mid-band network (balances speed and coverage). Carriers building superfast 5G networks must install tons of small cell sites — about the size of pizza boxes — to light poles, walls or towers, often in relatively small proximity to one another. For that reason, superfast networks are mostly being deployed city by city. Eventually, most US carriers will have a mix of the different network types that will enable both broad coverage and fast speeds.

Just how fast will download speeds be?

introduction about 5g technology

The fastest 5G networks are expected to be at least 10 times faster than 4G LTE, according to wireless industry trade group GSMA. Some experts say they could eventually be 100 times faster. That’s fast enough to download a two hour movie in fewer than 10 seconds, versus around 7 minutes with 4G. Actual download speeds will depend on a number of factors, including location and network traffic.

How can you use it?

In order to connect to and get the benefits of a 5G network, consumers have to have 5G-enabled devices. Samsung, Motorola, Huawei, LG, OnePlus and several other device makers have released 5G phones. Apple is widely expected to release a 5G iPhone later in fall 2020. Some companies — including manufacturers and the NFL — are also working with carriers to install personal 5G networks so they can reap the benefits without waiting for the nationwide rollout.

Are there drawbacks?

Significant adoption of 5G is going to take years — industry trade group GSMA estimates that by 2025, around half of mobile connections will be 5G (the rest will be older tech, like 4G and 3G). There are also concerns among regulators and others about the security of 5G , especially since crucial technologies such as self-driving cars and healthcare systems will be built on top of the network.

Development by Ivory Sherman

5G Tutorial

  • 5G Tutorial

5G - Introduction

  • 5G - Technology
  • 5G - Architecture
  • 5G - Time Period Required
  • 5G - Applications
  • 5G - Advancement
  • 5G - Advantages & Disadvantages
  • 5G - Challenges
  • 5G - Future Scope
  • 5G Useful Resources
  • 5G - Quick Guide
  • 5G - Useful Resources
  • 5G - Discussion
  • Selected Reading
  • UPSC IAS Exams Notes
  • Developer's Best Practices
  • Questions and Answers
  • Effective Resume Writing
  • HR Interview Questions
  • Computer Glossary

Radio technologies have evidenced a rapid and multidirectional evolution with the launch of the analogue cellular systems in 1980s. Thereafter, digital wireless communication systems are consistently on a mission to fulfil the growing need of human beings (1G, …4G, or now 5G).

5G Technology

So, this article describes the 5G technology emphasizing on its salient features, technological design (architecture), advantages, shortcomings, challenges, and future scope.

Salient Features of 5G

5 th Generation Mobile Network or simply 5G is the forthcoming revolution of mobile technology. The features and its usability are much beyond the expectation of a normal human being. With its ultra-high speed, it is potential enough to change the meaning of a cell phone usability.

Salient Features of 5G

With a huge array of innovative features, now your smart phone would be more parallel to the laptop. You can use broadband internet connection; other significant features that fascinate people are more gaming options, wider multimedia options, connectivity everywhere, zero latency, faster response time, and high quality sound and HD video can be transferred on other cell phone without compromising with the quality of audio and video.

<b>R</b> Series

Greater Performance

  • Intel Series
  • NVIDIA Series
  • 4K Monitors
  • BRIX (Mini-PC Barebone)
  • Gaming Chair
  • Power Supply
  • Server Motherboard
  • Workstation Motherboard
  • Rack Server
  • High Density Server
  • Tower Server / Workstation
  • Advanced Cooling
  • Data Center - OCP
  • AI Platform
  • Visual Computing
  • High-Performance Computing Server
  • Hyper-Converged Server
  • Storage Server
  • Embedded Computing
  • Network Server
  • Hybrid/Private Cloud Server
  • Edge Server
  • R Series Rack Server
  • H Series High Density Server
  • G Series GPU Server
  • E Series Edge Server
  • S Series Storage Server
  • W Series Tower Server / Workstation
  • OCP Series Open Compute Project
  • AI & AIOT
  • Networking / 5G
  • 5G & Telecom
  • Creative & Gaming
  • Data Center
  • Manufacturing
  • Public Sector
  • SERVICE/SUPPORT
  • Language Events CSR Member

introduction about 5g technology

What is 5G? An Introduction to 5G Networks and Applications

introduction about 5g technology

5G CrowdCell Emerged into Your Life

An Immersive VR Stadium Experience with 5G eMBB Technology

An Autonomous Vehicles Network with 5G URLLC Technology

What is Edge Computing? Definition and Cases Explained

GIGABYTE will enable your solutions of tomorrow and bring smart to life

AI & AIoT

How to Benefit from AI In the Healthcare & Medical Industry

How to Benefit from AI in the Automotive & Transportation Industry

introduction about 5g technology

  • Free Python 3 Tutorial
  • Control Flow
  • Exception Handling
  • Python Programs
  • Python Projects
  • Python Interview Questions
  • Python Database
  • Data Science With Python
  • Machine Learning with Python

Related Articles

  • Solve Coding Problems
  • How to Connect Front End and Backend
  • Scrum - For Beginners With Detailed Description
  • Top 15 Service Based Companies in India To Apply in 2024
  • WebAssembly - The next BIG thing!
  • Skills You Must Have For FAANG Companies
  • 10 Ways To Make Money With Memes
  • Open Source Terminologies
  • How to Effectively Use Storytelling in Job Interviews
  • How to Become a Data Consultant
  • Technical Documentation - Types, Required Skills, Challenges
  • 7 Clean Coding Practices Developers Should Follow
  • 5 Effective Productivity Hacks For Programmers
  • In Office or Work From Home - What is Better for Software Developers?
  • 5 Best Ways To Make Money From Your Passion
  • Apache Tomcat vs Eclipse Jetty: Top Differences
  • 7 Things to Consider Before Choosing a Cloud Service Provider
  • C++ for Game Development: A Complete Guide
  • 5 Most High-Demand Skillsets For Remote Jobs
  • What is Typography in UI Design?

What is 5G Wireless Technology and How it Works?

5G will be the post-smartphone era. But phones are the first place to launch because they’re such an anchor in our lives from a connectivity standpoint.

5G Technology

What is 5G Wireless Technology?

How does 5g wireless technology work.

5G Working

What are the Benefits of 5G Wireless Technology?

  • 5G will make our smartphones much smarter with faster and more uniform data rates, lower latency and cost-per-bit and this, in turn, will lead to the common acceptance of new immersive technologies like Virtual Reality or Augmented Reality.
  • 5G will have the convenience of ultra-reliable, low latency links that will empower industries to invest in more projects which require remote control of critical infrastructure in various fields like medicine, aviation, etc.
  • 5G will lead to an Internet of Things revolution as it has the ability to scale up or down in features like data rates, power, and mobility which is perfect for an application like connecting multiple embedded sensors in almost all devices!

What are the Parameters for 5G Wireless Technology?

When will the 5g wireless technology be launched, what will be the economic impact of 5g wireless technology, please login to comment....

author

Improve your Coding Skills with Practice

 alt=

TechRepublic

Account information.

introduction about 5g technology

Share with Your Friends

A brief history of 5G

Your email has been sent

Image of Esther Shein

When the fifth generation of mobile communications known as 5G debuted in 2019, it was like catching the proverbial lightning in the bottle. The technology promised faster data speeds, better response times, higher densities of devices, more reliability and more availability, according to Frost & Sullivan .

With much lower latency as another significant benefit, 5G was designed to support a massive number of devices as well as vehicle-to-anything communication, among other use cases — all while being more energy-efficient. It’s safe to say 5G is well on its way to achieving these goals.

Verizon was the first carrier to roll out a 5G mobile network in Chicago and Minneapolis in 2019. Sprint began experimenting with 5G in early 2019, and by December of that same year, AT&T and T-Mobile had rolled out more expansive networks using low-band frequencies that could travel greater distances.

Major carriers are rolling out high-speed mobile networks that use 5G technology, which can transmit data up to 50 times faster than today’s phone networks, but 5G is being touted as more than just a boost to phone service and download speeds. Some experts, such as Karri Kuoppamaki, vice president of radio network technology and strategy at T-Mobile, call it one of the most transformative technologies we have seen to date.

SEE: Mobile Device Security Policy (TechRepublic Premium)

5G cellular makes a splash

First 5g devices roll out, 5g use cases, looking ahead: 5g and smartphones.

Already, 5G is having a significant impact.

“As 4G unlocked the app economy, 5G is poised to unlock higher bandwidth, near real-time responses, the industrial Internet of Things , and mission-critical products and applications,’’ the IT firm Accenture said. “5G unlocks rapid data and insight-driven decision-making.’’

The firm estimated that 5G could add up to $1.5 trillion to US GDP and up to €1 trillion to European GDP between 2021 and 2025.

According to recently released research from Enterprise Strategy Group, 59% of organizations now believe they will use private or public 5G to connect edge computing locations in two years.

In the past two years, Deloitte has seen an uptick in interest in private cellular networks using both licensed and unlicensed spectrum, according to Dan Littman, principal and national sector leader for telecommunications at Deloitte. In that time, enterprises have recognized cellular — and 5G specifically — as a cost-effective method to cover large geographic spaces, especially outdoors.

“Enterprises recognize that 5G can enhance network performance when working in tandem with their other enterprise network technologies to improve reliability, security, capacity and coverage,’’ Littman said.

Many enterprises are looking to private cellular to shore up their network modernization issues.

“5G is following a similar trajectory as cloud, in which basic infrastructure improvements preceded operational transformation,’’ Littman added.

The Global Mobile Suppliers Association began tracking worldwide 5G devices in March 2019, and it identified 23 vendors planning the release of 33 different 5G devices. There were seven announced 5G device form factors: telephones, hotspots, indoor and outdoor customer-premises equipment, modules, Snap-On dongles and adapters, and USB terminals.

By October 2019, the number of announced 5G devices had increased to 129 across 15 form factors, up from 56 vendors. In terms of 5G IoT, as of April 2019, there were four commercial 5G modem chipsets and one commercial processor/platform.

On March 6, 2020, Samsung released the first-ever all-5G smartphone , the Galaxy S20. Incorporating 5G gave the phone a much higher price tag than the 4G version, with the device starting at $1,000, in comparison with Samsung Galaxy S10e, which started at $750.  

There are many use cases for 5G, including smart cities and automated factories.

Deloitte sees the greatest interest from the retail, manufacturing, warehousing and healthcare verticals. There has also been significant interest from the government, both in the civilian and defense sectors, according to Littman.

“Initial use cases are weighted heavily on asset management and inventory tracking as well as remote assistance using AR/VR capabilities,’’ he said.

By 2021, 5G had moved beyond the hype phase, according to McKinsey. In a podcast that year , partners Enno de Boer and Michael Chui discussed using 5G to secure supply chains, despite deployment challenges.

De Boer said he was seeing an explosion of the shop floor use cases, because one of the benefits of the technology is the ability to prioritize network traffic like a traffic cop.

“With that, you can then manage how the bandwidth is flowing, and you can make sure that literally every application is running properly,” he said.

However, he added that only 20% to 30% of all 10 million factories around the globe have Wi-Fi connectivity in the first place, so they may not need 5G yet. Chui stressed that 5G is “not just a way to download things faster,’’ and that enabling remote healthcare is one of the most significant use cases.

Live-streaming video is expected to be the first application to benefit from 5G. Mobile gaming and VR are others. 5G is expected to be a key theme at Mobile World Congress in February, where its implications for industry, equity and society will be discussed.

Ericsson’s report “ 5G: The Next Wave ” claims that roughly 30% of all smartphone users, approximately 510 million people, plan to upgrade to a 5G subscription in 2023.

The company said 5G enables early “metaverse-related activities,” making them more accessible to subscribers. Those activities include gaming, socializing and shopping in virtual worlds.

In April 2022, Gartner projected that 5G smartphone unit production was expected to grow by 45.3% in 2022, reaching 808 million units and representing 55% of all smartphones produced.

For now, 4G/LTE still has the upper hand, although that is expected to change by 2027, when there will be 3.1 billion 5G subscribers and 2.1 billion 4G subscribers worldwide, with 381 million subscribers in the U.S., according to a forecast from ABI Research . The firm also projects 5G devices will generate 1.2 exabytes of data traffic by 2025.

Read more about this 5G theme with these recent features: How to navigate the current 5G and IoT threat landscape and the race for innovation and disruption .

Subscribe to the Innovation Insider Newsletter

Catch up on the latest tech innovations that are changing the world, including IoT, 5G, the latest about phones, security, smart cities, AI, robotics, and more. Delivered Tuesdays and Fridays

  • 5G mobile networks: A cheat sheet
  • iPhone 13 cheat sheet: Everything you need to know about Apple's flagship phones (free PDF)
  • Bring Your Own Device (BYOD) policy
  • 5G: More must-read coverage

Image of Esther Shein

Create a TechRepublic Account

Get the web's best business technology news, tutorials, reviews, trends, and analysis—in your inbox. Let's start with the basics.

* - indicates required fields

Sign in to TechRepublic

Lost your password? Request a new password

Reset Password

Please enter your email adress. You will receive an email message with instructions on how to reset your password.

Check your email for a password reset link. If you didn't receive an email don't forgot to check your spam folder, otherwise contact support .

Welcome. Tell us a little bit about you.

This will help us provide you with customized content.

Want to receive more TechRepublic news?

You're all set.

Thanks for signing up! Keep an eye out for a confirmation email from our team. To ensure any newsletters you subscribed to hit your inbox, make sure to add [email protected] to your contacts list.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Advanced Search
  • Journal List
  • Sensors (Basel)

Logo of sensors

Study and Investigation on 5G Technology: A Systematic Review

Ramraj dangi.

1 School of Computing Science and Engineering, VIT University Bhopal, Bhopal 466114, India; [email protected] (R.D.); [email protected] (P.L.)

Praveen Lalwani

Gaurav choudhary.

2 Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Lyngby, Denmark; moc.liamg@7777yrahduohcvaruag

3 Department of Information Security Engineering, Soonchunhyang University, Asan-si 31538, Korea

Giovanni Pau

4 Faculty of Engineering and Architecture, Kore University of Enna, 94100 Enna, Italy; [email protected]

Associated Data

Not applicable.

In wireless communication, Fifth Generation (5G) Technology is a recent generation of mobile networks. In this paper, evaluations in the field of mobile communication technology are presented. In each evolution, multiple challenges were faced that were captured with the help of next-generation mobile networks. Among all the previously existing mobile networks, 5G provides a high-speed internet facility, anytime, anywhere, for everyone. 5G is slightly different due to its novel features such as interconnecting people, controlling devices, objects, and machines. 5G mobile system will bring diverse levels of performance and capability, which will serve as new user experiences and connect new enterprises. Therefore, it is essential to know where the enterprise can utilize the benefits of 5G. In this research article, it was observed that extensive research and analysis unfolds different aspects, namely, millimeter wave (mmWave), massive multiple-input and multiple-output (Massive-MIMO), small cell, mobile edge computing (MEC), beamforming, different antenna technology, etc. This article’s main aim is to highlight some of the most recent enhancements made towards the 5G mobile system and discuss its future research objectives.

1. Introduction

Most recently, in three decades, rapid growth was marked in the field of wireless communication concerning the transition of 1G to 4G [ 1 , 2 ]. The main motto behind this research was the requirements of high bandwidth and very low latency. 5G provides a high data rate, improved quality of service (QoS), low-latency, high coverage, high reliability, and economically affordable services. 5G delivers services categorized into three categories: (1) Extreme mobile broadband (eMBB). It is a nonstandalone architecture that offers high-speed internet connectivity, greater bandwidth, moderate latency, UltraHD streaming videos, virtual reality and augmented reality (AR/VR) media, and many more. (2) Massive machine type communication (eMTC), 3GPP releases it in its 13th specification. It provides long-range and broadband machine-type communication at a very cost-effective price with less power consumption. eMTC brings a high data rate service, low power, extended coverage via less device complexity through mobile carriers for IoT applications. (3) ultra-reliable low latency communication (URLLC) offers low-latency and ultra-high reliability, rich quality of service (QoS), which is not possible with traditional mobile network architecture. URLLC is designed for on-demand real-time interaction such as remote surgery, vehicle to vehicle (V2V) communication, industry 4.0, smart grids, intelligent transport system, etc. [ 3 ].

1.1. Evolution from 1G to 5G

First generation (1G): 1G cell phone was launched between the 1970s and 80s, based on analog technology, which works just like a landline phone. It suffers in various ways, such as poor battery life, voice quality, and dropped calls. In 1G, the maximum achievable speed was 2.4 Kbps.

Second Generation (2G): In 2G, the first digital system was offered in 1991, providing improved mobile voice communication over 1G. In addition, Code-Division Multiple Access (CDMA) and Global System for Mobile (GSM) concepts were also discussed. In 2G, the maximum achievable speed was 1 Mpbs.

Third Generation (3G): When technology ventured from 2G GSM frameworks into 3G universal mobile telecommunication system (UMTS) framework, users encountered higher system speed and quicker download speed making constant video calls. 3G was the first mobile broadband system that was formed to provide the voice with some multimedia. The technology behind 3G was high-speed packet access (HSPA/HSPA+). 3G used MIMO for multiplying the power of the wireless network, and it also used packet switching for fast data transmission.

Fourth Generation (4G): It is purely mobile broadband standard. In digital mobile communication, it was observed information rate that upgraded from 20 to 60 Mbps in 4G [ 4 ]. It works on LTE and WiMAX technologies, as well as provides wider bandwidth up to 100 Mhz. It was launched in 2010.

Fourth Generation LTE-A (4.5G): It is an advanced version of standard 4G LTE. LTE-A uses MIMO technology to combine multiple antennas for both transmitters as well as a receiver. Using MIMO, multiple signals and multiple antennas can work simultaneously, making LTE-A three times faster than standard 4G. LTE-A offered an improved system limit, decreased deferral in the application server, access triple traffic (Data, Voice, and Video) wirelessly at any time anywhere in the world.LTE-A delivers speeds of over 42 Mbps and up to 90 Mbps.

Fifth Generation (5G): 5G is a pillar of digital transformation; it is a real improvement on all the previous mobile generation networks. 5G brings three different services for end user like Extreme mobile broadband (eMBB). It offers high-speed internet connectivity, greater bandwidth, moderate latency, UltraHD streaming videos, virtual reality and augmented reality (AR/VR) media, and many more. Massive machine type communication (eMTC), it provides long-range and broadband machine-type communication at a very cost-effective price with less power consumption. eMTC brings a high data rate service, low power, extended coverage via less device complexity through mobile carriers for IoT applications. Ultra-reliable low latency communication (URLLC) offers low-latency and ultra-high reliability, rich quality of service (QoS), which is not possible with traditional mobile network architecture. URLLC is designed for on-demand real-time interaction such as remote surgery, vehicle to vehicle (V2V) communication, industry 4.0, smart grids, intelligent transport system, etc. 5G faster than 4G and offers remote-controlled operation over a reliable network with zero delays. It provides down-link maximum throughput of up to 20 Gbps. In addition, 5G also supports 4G WWWW (4th Generation World Wide Wireless Web) [ 5 ] and is based on Internet protocol version 6 (IPv6) protocol. 5G provides unlimited internet connection at your convenience, anytime, anywhere with extremely high speed, high throughput, low-latency, higher reliability and scalability, and energy-efficient mobile communication technology [ 6 ]. 5G mainly divided in two parts 6 GHz 5G and Millimeter wave(mmWave) 5G.

6 GHz is a mid frequency band which works as a mid point between capacity and coverage to offer perfect environment for 5G connectivity. 6 GHz spectrum will provide high bandwidth with improved network performance. It offers continuous channels that will reduce the need for network densification when mid-band spectrum is not available and it makes 5G connectivity affordable at anytime, anywhere for everyone.

mmWave is an essential technology of 5G network which build high performance network. 5G mmWave offer diverse services that is why all network providers should add on this technology in their 5G deployment planning. There are lots of service providers who deployed 5G mmWave, and their simulation result shows that 5G mmwave is a far less used spectrum. It provides very high speed wireless communication and it also offers ultra-wide bandwidth for next generation mobile network.

The evolution of wireless mobile technologies are presented in Table 1 . The abbreviations used in this paper are mentioned in Table 2 .

Summary of Mobile Technology.

Table of Notations and Abbreviations.

1.2. Key Contributions

The objective of this survey is to provide a detailed guide of 5G key technologies, methods to researchers, and to help with understanding how the recent works addressed 5G problems and developed solutions to tackle the 5G challenges; i.e., what are new methods that must be applied and how can they solve problems? Highlights of the research article are as follows.

  • This survey focused on the recent trends and development in the era of 5G and novel contributions by the researcher community and discussed technical details on essential aspects of the 5G advancement.
  • In this paper, the evolution of the mobile network from 1G to 5G is presented. In addition, the growth of mobile communication under different attributes is also discussed.
  • This paper covers the emerging applications and research groups working on 5G & different research areas in 5G wireless communication network with a descriptive taxonomy.
  • This survey discusses the current vision of the 5G networks, advantages, applications, key technologies, and key features. Furthermore, machine learning prospects are also explored with the emerging requirements in the 5G era. The article also focused on technical aspects of 5G IoT Based approaches and optimization techniques for 5G.
  • we provide an extensive overview and recent advancement of emerging technologies of 5G mobile network, namely, MIMO, Non-Orthogonal Multiple Access (NOMA), mmWave, Internet of Things (IoT), Machine Learning (ML), and optimization. Also, a technical summary is discussed by highlighting the context of current approaches and corresponding challenges.
  • Security challenges and considerations while developing 5G technology are discussed.
  • Finally, the paper concludes with the future directives.

The existing survey focused on architecture, key concepts, and implementation challenges and issues. In contrast, this survey covers the state-of-the-art techniques as well as corresponding recent novel developments by researchers. Various recent significant papers are discussed with the key technologies accelerating the development and production of 5G products.

2. Existing Surveys and Their Applicability

In this paper, a detailed survey on various technologies of 5G networks is presented. Various researchers have worked on different technologies of 5G networks. In this section, Table 3 gives a tabular representation of existing surveys of 5G networks. Massive MIMO, NOMA, small cell, mmWave, beamforming, and MEC are the six main pillars that helped to implement 5G networks in real life.

A comparative overview of existing surveys on different technologies of 5G networks.

2.1. Limitations of Existing Surveys

The existing survey focused on architecture, key concepts, and implementation challenges and issues. The numerous current surveys focused on various 5G technologies with different parameters, and the authors did not cover all the technologies of the 5G network in detail with challenges and recent advancements. Few authors worked on MIMO (Non-Orthogonal Multiple Access) NOMA, MEC, small cell technologies. In contrast, some others worked on beamforming, Millimeter-wave (mmWave). But the existing survey did not cover all the technologies of the 5G network from a research and advancement perspective. No detailed survey is available in the market covering all the 5G network technologies and currently published research trade-offs. So, our main aim is to give a detailed study of all the technologies working on the 5G network. In contrast, this survey covers the state-of-the-art techniques as well as corresponding recent novel developments by researchers. Various recent significant papers are discussed with the key technologies accelerating the development and production of 5G products. This survey article collected key information about 5G technology and recent advancements, and it can be a kind of a guide for the reader. This survey provides an umbrella approach to bring multiple solutions and recent improvements in a single place to accelerate the 5G research with the latest key enabling solutions and reviews. A systematic layout representation of the survey in Figure 1 . We provide a state-of-the-art comparative overview of the existing surveys on different technologies of 5G networks in Table 3 .

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g001.jpg

Systematic layout representation of survey.

2.2. Article Organization

This article is organized under the following sections. Section 2 presents existing surveys and their applicability. In Section 3 , the preliminaries of 5G technology are presented. In Section 4 , recent advances of 5G technology based on Massive MIMO, NOMA, Millimeter Wave, 5G with IoT, machine learning for 5G, and Optimization in 5G are provided. In Section 5 , a description of novel 5G features over 4G is provided. Section 6 covered all the security concerns of the 5G network. Section 7 , 5G technology based on above-stated challenges summarize in tabular form. Finally, Section 8 and Section 9 conclude the study, which paves the path for future research.

3. Preliminary Section

3.1. emerging 5g paradigms and its features.

5G provides very high speed, low latency, and highly salable connectivity between multiple devices and IoT worldwide. 5G will provide a very flexible model to develop a modern generation of applications and industry goals [ 26 , 27 ]. There are many services offered by 5G network architecture are stated below:

Massive machine to machine communications: 5G offers novel, massive machine-to-machine communications [ 28 ], also known as the IoT [ 29 ], that provide connectivity between lots of machines without any involvement of humans. This service enhances the applications of 5G and provides connectivity between agriculture, construction, and industries [ 30 ].

Ultra-reliable low latency communications (URLLC): This service offers real-time management of machines, high-speed vehicle-to-vehicle connectivity, industrial connectivity and security principles, and highly secure transport system, and multiple autonomous actions. Low latency communications also clear up a different area where remote medical care, procedures, and operation are all achievable [ 31 ].

Enhanced mobile broadband: Enhance mobile broadband is an important use case of 5G system, which uses massive MIMO antenna, mmWave, beamforming techniques to offer very high-speed connectivity across a wide range of areas [ 32 ].

For communities: 5G provides a very flexible internet connection between lots of machines to make smart homes, smart schools, smart laboratories, safer and smart automobiles, and good health care centers [ 33 ].

For businesses and industry: As 5G works on higher spectrum ranges from 24 to 100 GHz. This higher frequency range provides secure low latency communication and high-speed wireless connectivity between IoT devices and industry 4.0, which opens a market for end-users to enhance their business models [ 34 ].

New and Emerging technologies: As 5G came up with many new technologies like beamforming, massive MIMO, mmWave, small cell, NOMA, MEC, and network slicing, it introduced many new features to the market. Like virtual reality (VR), users can experience the physical presence of people who are millions of kilometers away from them. Many new technologies like smart homes, smart workplaces, smart schools, smart sports academy also came into the market with this 5G Mobile network model [ 35 ].

3.2. Commercial Service Providers of 5G

5G provides high-speed internet browsing, streaming, and downloading with very high reliability and low latency. 5G network will change your working style, and it will increase new business opportunities and provide innovations that we cannot imagine. This section covers top service providers of 5G network [ 36 , 37 ].

Ericsson: Ericsson is a Swedish multinational networking and telecommunications company, investing around 25.62 billion USD in 5G network, which makes it the biggest telecommunication company. It claims that it is the only company working on all the continents to make the 5G network a global standard for the next generation wireless communication. Ericsson developed the first 5G radio prototype that enables the operators to set up the live field trials in their network, which helps operators understand how 5G reacts. It plays a vital role in the development of 5G hardware. It currently provides 5G services in over 27 countries with content providers like China Mobile, GCI, LGU+, AT&T, Rogers, and many more. It has 100 commercial agreements with different operators as of 2020.

Verizon: It is American multinational telecommunication which was founded in 1983. Verizon started offering 5G services in April 2020, and by December 2020, it has actively provided 5G services in 30 cities of the USA. They planned that by the end of 2021, they would deploy 5G in 30 more new cities. Verizon deployed a 5G network on mmWave, a very high band spectrum between 30 to 300 GHz. As it is a significantly less used spectrum, it provides very high-speed wireless communication. MmWave offers ultra-wide bandwidth for next-generation mobile networks. MmWave is a faster and high-band spectrum that has a limited range. Verizon planned to increase its number of 5G cells by 500% by 2020. Verizon also has an ultra wide-band flagship 5G service which is the best 5G service that increases the market price of Verizon.

Nokia: Nokia is a Finnish multinational telecommunications company which was founded in 1865. Nokia is one of the companies which adopted 5G technology very early. It is developing, researching, and building partnerships with various 5G renders to offer 5G communication as soon as possible. Nokia collaborated with Deutsche Telekom and Hamburg Port Authority and provided them 8000-hectare site for their 5G MoNArch project. Nokia is the only company that supplies 5G technology to all the operators of different countries like AT&T, Sprint, T-Mobile US and Verizon in the USA, Korea Telecom, LG U+ and SK Telecom in South Korea and NTT DOCOMO, KDDI, and SoftBank in Japan. Presently, Nokia has around 150+ agreements and 29 live networks all over the world. Nokia is continuously working hard on 5G technology to expand 5G networks all over the globe.

AT&T: AT&T is an American multinational company that was the first to deploy a 5G network in reality in 2018. They built a gigabit 5G network connection in Waco, TX, Kalamazoo, MI, and South Bend to achieve this. It is the first company that archives 1–2 gigabit per second speed in 2019. AT&T claims that it provides a 5G network connection among 225 million people worldwide by using a 6 GHz spectrum band.

T-Mobile: T-Mobile US (TMUS) is an American wireless network operator which was the first service provider that offers a real 5G nationwide network. The company knew that high-band 5G was not feasible nationwide, so they used a 600 MHz spectrum to build a significant portion of its 5G network. TMUS is planning that by 2024 they will double the total capacity and triple the full 5G capacity of T-Mobile and Sprint combined. The sprint buyout is helping T-Mobile move forward the company’s current market price to 129.98 USD.

Samsung: Samsung started their research in 5G technology in 2011. In 2013, Samsung successfully developed the world’s first adaptive array transceiver technology operating in the millimeter-wave Ka bands for cellular communications. Samsung provides several hundred times faster data transmission than standard 4G for core 5G mobile communication systems. The company achieved a lot of success in the next generation of technology, and it is considered one of the leading companies in the 5G domain.

Qualcomm: Qualcomm is an American multinational corporation in San Diego, California. It is also one of the leading company which is working on 5G chip. Qualcomm’s first 5G modem chip was announced in October 2016, and a prototype was demonstrated in October 2017. Qualcomm mainly focuses on building products while other companies talk about 5G; Qualcomm is building the technologies. According to one magazine, Qualcomm was working on three main areas of 5G networks. Firstly, radios that would use bandwidth from any network it has access to; secondly, creating more extensive ranges of spectrum by combining smaller pieces; and thirdly, a set of services for internet applications.

ZTE Corporation: ZTE Corporation was founded in 1985. It is a partially Chinese state-owned technology company that works in telecommunication. It was a leading company that worked on 4G LTE, and it is still maintaining its value and doing research and tests on 5G. It is the first company that proposed Pre5G technology with some series of solutions.

NEC Corporation: NEC Corporation is a Japanese multinational information technology and electronics corporation headquartered in Minato, Tokyo. ZTE also started their research on 5G, and they introduced a new business concept. NEC’s main aim is to develop 5G NR for the global mobile system and create secure and intelligent technologies to realize 5G services.

Cisco: Cisco is a USA networking hardware company that also sleeves up for 5G network. Cisco’s primary focus is to support 5G in three ways: Service—enable 5G services faster so all service providers can increase their business. Infrastructure—build 5G-oriented infrastructure to implement 5G more quickly. Automation—make a more scalable, flexible, and reliable 5G network. The companies know the importance of 5G, and they want to connect more than 30 billion devices in the next couple of years. Cisco intends to work on network hardening as it is a vital part of 5G network. Cisco used AI with deep learning to develop a 5G Security Architecture, enabling Secure Network Transformation.

3.3. 5G Research Groups

Many research groups from all over the world are working on a 5G wireless mobile network [ 38 ]. These groups are continuously working on various aspects of 5G. The list of those research groups are presented as follows: 5GNOW (5th Generation Non-Orthogonal Waveform for Asynchronous Signaling), NEWCOM (Network of Excellence in Wireless Communication), 5GIC (5G Innovation Center), NYU (New York University) Wireless, 5GPPP (5G Infrastructure Public-Private Partnership), EMPHATIC (Enhanced Multi-carrier Technology for Professional Adhoc and Cell-Based Communication), ETRI(Electronics and Telecommunication Research Institute), METIS (Mobile and wireless communication Enablers for the Twenty-twenty Information Society) [ 39 ]. The various research groups along with the research area are presented in Table 4 .

Research groups working on 5G mobile networks.

3.4. 5G Applications

5G is faster than 4G and offers remote-controlled operation over a reliable network with zero delays. It provides down-link maximum throughput of up to 20 Gbps. In addition, 5G also supports 4G WWWW (4th Generation World Wide Wireless Web) [ 5 ] and is based on Internet protocol version 6 (IPv6) protocol. 5G provides unlimited internet connection at your convenience, anytime, anywhere with extremely high speed, high throughput, low-latency, higher reliability, greater scalablility, and energy-efficient mobile communication technology [ 6 ].

There are lots of applications of 5G mobile network are as follows:

  • High-speed mobile network: 5G is an advancement on all the previous mobile network technologies, which offers very high speed downloading speeds 0 of up to 10 to 20 Gbps. The 5G wireless network works as a fiber optic internet connection. 5G is different from all the conventional mobile transmission technologies, and it offers both voice and high-speed data connectivity efficiently. 5G offers very low latency communication of less than a millisecond, useful for autonomous driving and mission-critical applications. 5G will use millimeter waves for data transmission, providing higher bandwidth and a massive data rate than lower LTE bands. As 5 Gis a fast mobile network technology, it will enable virtual access to high processing power and secure and safe access to cloud services and enterprise applications. Small cell is one of the best features of 5G, which brings lots of advantages like high coverage, high-speed data transfer, power saving, easy and fast cloud access, etc. [ 40 ].
  • Entertainment and multimedia: In one analysis in 2015, it was found that more than 50 percent of mobile internet traffic was used for video downloading. This trend will surely increase in the future, which will make video streaming more common. 5G will offer High-speed streaming of 4K videos with crystal clear audio, and it will make a high definition virtual world on your mobile. 5G will benefit the entertainment industry as it offers 120 frames per second with high resolution and higher dynamic range video streaming, and HD TV channels can also be accessed on mobile devices without any interruptions. 5G provides low latency high definition communication so augmented reality (AR), and virtual reality (VR) will be very easily implemented in the future. Virtual reality games are trendy these days, and many companies are investing in HD virtual reality games. The 5G network will offer high-speed internet connectivity with a better gaming experience [ 41 ].
  • Smart homes : smart home appliances and products are in demand these days. The 5G network makes smart homes more real as it offers high-speed connectivity and monitoring of smart appliances. Smart home appliances are easily accessed and configured from remote locations using the 5G network as it offers very high-speed low latency communication.
  • Smart cities: 5G wireless network also helps develop smart cities applications such as automatic traffic management, weather update, local area broadcasting, energy-saving, efficient power supply, smart lighting system, water resource management, crowd management, emergency control, etc.
  • Industrial IoT: 5G wireless technology will provide lots of features for future industries such as safety, process tracking, smart packing, shipping, energy efficiency, automation of equipment, predictive maintenance, and logistics. 5G smart sensor technology also offers smarter, safer, cost-effective, and energy-saving industrial IoT operations.
  • Smart Farming: 5G technology will play a crucial role in agriculture and smart farming. 5G sensors and GPS technology will help farmers track live attacks on crops and manage them quickly. These smart sensors can also be used for irrigation, pest, insect, and electricity control.
  • Autonomous Driving: The 5G wireless network offers very low latency high-speed communication, significant for autonomous driving. It means self-driving cars will come to real life soon with 5G wireless networks. Using 5G autonomous cars can easily communicate with smart traffic signs, objects, and other vehicles running on the road. 5G’s low latency feature makes self-driving more real as every millisecond is essential for autonomous vehicles, decision-making is done in microseconds to avoid accidents.
  • Healthcare and mission-critical applications: 5G technology will bring modernization in medicine where doctors and practitioners can perform advanced medical procedures. The 5G network will provide connectivity between all classrooms, so attending seminars and lectures will be easier. Through 5G technology, patients can connect with doctors and take their advice. Scientists are building smart medical devices which can help people with chronic medical conditions. The 5G network will boost the healthcare industry with smart devices, the internet of medical things, smart sensors, HD medical imaging technologies, and smart analytics systems. 5G will help access cloud storage, so accessing healthcare data will be very easy from any location worldwide. Doctors and medical practitioners can easily store and share large files like MRI reports within seconds using the 5G network.
  • Satellite Internet: In many remote areas, ground base stations are not available, so 5G will play a crucial role in providing connectivity in such areas. The 5G network will provide connectivity using satellite systems, and the satellite system uses a constellation of multiple small satellites to provide connectivity in urban and rural areas across the world.

4. 5G Technologies

This section describes recent advances of 5G Massive MIMO, 5G NOMA, 5G millimeter wave, 5G IOT, 5G with machine learning, and 5G optimization-based approaches. In addition, the summary is also presented in each subsection that paves the researchers for the future research direction.

4.1. 5G Massive MIMO

Multiple-input-multiple-out (MIMO) is a very important technology for wireless systems. It is used for sending and receiving multiple signals simultaneously over the same radio channel. MIMO plays a very big role in WI-FI, 3G, 4G, and 4G LTE-A networks. MIMO is mainly used to achieve high spectral efficiency and energy efficiency but it was not up to the mark MIMO provides low throughput and very low reliable connectivity. To resolve this, lots of MIMO technology like single user MIMO (SU-MIMO), multiuser MIMO (MU-MIMO) and network MIMO were used. However, these new MIMO also did not still fulfill the demand of end users. Massive MIMO is an advancement of MIMO technology used in the 5G network in which hundreds and thousands of antennas are attached with base stations to increase throughput and spectral efficiency. Multiple transmit and receive antennas are used in massive MIMO to increase the transmission rate and spectral efficiency. When multiple UEs generate downlink traffic simultaneously, massive MIMO gains higher capacity. Massive MIMO uses extra antennas to move energy into smaller regions of space to increase spectral efficiency and throughput [ 43 ]. In traditional systems data collection from smart sensors is a complex task as it increases latency, reduced data rate and reduced reliability. While massive MIMO with beamforming and huge multiplexing techniques can sense data from different sensors with low latency, high data rate and higher reliability. Massive MIMO will help in transmitting the data in real-time collected from different sensors to central monitoring locations for smart sensor applications like self-driving cars, healthcare centers, smart grids, smart cities, smart highways, smart homes, and smart enterprises [ 44 ].

Highlights of 5G Massive MIMO technology are as follows:

  • Data rate: Massive MIMO is advised as the one of the dominant technologies to provide wireless high speed and high data rate in the gigabits per seconds.
  • The relationship between wave frequency and antenna size: Both are inversely proportional to each other. It means lower frequency signals need a bigger antenna and vise versa.

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g002.jpg

Pictorial representation of multi-input and multi-output (MIMO).

  • MIMO role in 5G: Massive MIMO will play a crucial role in the deployment of future 5G mobile communication as greater spectral and energy efficiency could be enabled.

State-of-the-Art Approaches

Plenty of approaches were proposed to resolve the issues of conventional MIMO [ 7 ].

The MIMO multirate, feed-forward controller is suggested by Mae et al. [ 46 ]. In the simulation, the proposed model generates the smooth control input, unlike the conventional MIMO, which generates oscillated control inputs. It also outperformed concerning the error rate. However, a combination of multirate and single rate can be used for better results.

The performance of stand-alone MIMO, distributed MIMO with and without corporation MIMO, was investigated by Panzner et al. [ 47 ]. In addition, an idea about the integration of large scale in the 5G technology was also presented. In the experimental analysis, different MIMO configurations are considered. The variation in the ratio of overall transmit antennas to spatial is deemed step-wise from equality to ten.

The simulation of massive MIMO noncooperative and cooperative systems for down-link behavior was performed by He et al. [ 48 ]. It depends on present LTE systems, which deal with various antennas in the base station set-up. It was observed that collaboration in different BS improves the system behaviors, whereas throughput is reduced slightly in this approach. However, a new method can be developed which can enhance both system behavior and throughput.

In [ 8 ], different approaches that increased the energy efficiency benefits provided by massive MIMO were presented. They analyzed the massive MIMO technology and described the detailed design of the energy consumption model for massive MIMO systems. This article has explored several techniques to enhance massive MIMO systems’ energy efficiency (EE) gains. This paper reviews standard EE-maximization approaches for the conventional massive MIMO systems, namely, scaling number of antennas, real-time implementing low-complexity operations at the base station (BS), power amplifier losses minimization, and radio frequency (RF) chain minimization requirements. In addition, open research direction is also identified.

In [ 49 ], various existing approaches based on different antenna selection and scheduling, user selection and scheduling, and joint antenna and user scheduling methods adopted in massive MIMO systems are presented in this paper. The objective of this survey article was to make awareness about the current research and future research direction in MIMO for systems. They analyzed that complete utilization of resources and bandwidth was the most crucial factor which enhances the sum rate.

In [ 50 ], authors discussed the development of various techniques for pilot contamination. To calculate the impact of pilot contamination in time division duplex (TDD) massive MIMO system, TDD and frequency division duplexing FDD patterns in massive MIMO techniques are used. They discussed different issues in pilot contamination in TDD massive MIMO systems with all the possible future directions of research. They also classified various techniques to generate the channel information for both pilot-based and subspace-based approaches.

In [ 19 ], the authors defined the uplink and downlink services for a massive MIMO system. In addition, it maintains a performance matrix that measures the impact of pilot contamination on different performances. They also examined the various application of massive MIMO such as small cells, orthogonal frequency-division multiplexing (OFDM) schemes, massive MIMO IEEE 802, 3rd generation partnership project (3GPP) specifications, and higher frequency bands. They considered their research work crucial for cutting edge massive MIMO and covered many issues like system throughput performance and channel state acquisition at higher frequencies.

In [ 13 ], various approaches were suggested for MIMO future generation wireless communication. They made a comparative study based on performance indicators such as peak data rate, energy efficiency, latency, throughput, etc. The key findings of this survey are as follows: (1) spatial multiplexing improves the energy efficiency; (2) design of MIMO play a vital role in the enhancement of throughput; (3) enhancement of mMIMO focusing on energy & spectral performance; (4) discussed the future challenges to improve the system design.

In [ 51 ], the study of large-scale MIMO systems for an energy-efficient system sharing method was presented. For the resource allocation, circuit energy and transmit energy expenditures were taken into consideration. In addition, the optimization techniques were applied for an energy-efficient resource sharing system to enlarge the energy efficiency for individual QoS and energy constraints. The author also examined the BS configuration, which includes homogeneous and heterogeneous UEs. While simulating, they discussed that the total number of transmit antennas plays a vital role in boosting energy efficiency. They highlighted that the highest energy efficiency was obtained when the BS was set up with 100 antennas that serve 20 UEs.

This section includes various works done on 5G MIMO technology by different author’s. Table 5 shows how different author’s worked on improvement of various parameters such as throughput, latency, energy efficiency, and spectral efficiency with 5G MIMO technology.

Summary of massive MIMO-based approaches in 5G technology.

4.2. 5G Non-Orthogonal Multiple Access (NOMA)

NOMA is a very important radio access technology used in next generation wireless communication. Compared to previous orthogonal multiple access techniques, NOMA offers lots of benefits like high spectrum efficiency, low latency with high reliability and high speed massive connectivity. NOMA mainly works on a baseline to serve multiple users with the same resources in terms of time, space and frequency. NOMA is mainly divided into two main categories one is code domain NOMA and another is power domain NOMA. Code-domain NOMA can improve the spectral efficiency of mMIMO, which improves the connectivity in 5G wireless communication. Code-domain NOMA was divided into some more multiple access techniques like sparse code multiple access, lattice-partition multiple access, multi-user shared access and pattern-division multiple access [ 52 ]. Power-domain NOMA is widely used in 5G wireless networks as it performs well with various wireless communication techniques such as MIMO, beamforming, space-time coding, network coding, full-duplex and cooperative communication etc. [ 53 ]. The conventional orthogonal frequency-division multiple access (OFDMA) used by 3GPP in 4G LTE network provides very low spectral efficiency when bandwidth resources are allocated to users with low channel state information (CSI). NOMA resolved this issue as it enables users to access all the subcarrier channels so bandwidth resources allocated to the users with low CSI can still be accessed by the users with strong CSI which increases the spectral efficiency. The 5G network will support heterogeneous architecture in which small cell and macro base stations work for spectrum sharing. NOMA is a key technology of the 5G wireless system which is very helpful for heterogeneous networks as multiple users can share their data in a small cell using the NOMA principle.The NOMA is helpful in various applications like ultra-dense networks (UDN), machine to machine (M2M) communication and massive machine type communication (mMTC). As NOMA provides lots of features it has some challenges too such as NOMA needs huge computational power for a large number of users at high data rates to run the SIC algorithms. Second, when users are moving from the networks, to manage power allocation optimization is a challenging task for NOMA [ 54 ]. Hybrid NOMA (HNOMA) is a combination of power-domain and code-domain NOMA. HNOMA uses both power differences and orthogonal resources for transmission among multiple users. As HNOMA is using both power-domain NOMA and code-domain NOMA it can achieve higher spectral efficiency than Power-domain NOMA and code-domain NOMA. In HNOMA multiple groups can simultaneously transmit signals at the same time. It uses a message passing algorithm (MPA) and successive interference cancellation (SIC)-based detection at the base station for these groups [ 55 ].

Highlights of 5G NOMA technology as follows:

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g003.jpg

Pictorial representation of orthogonal and Non-Orthogonal Multiple Access (NOMA).

  • NOMA provides higher data rates and resolves all the loop holes of OMA that makes 5G mobile network more scalable and reliable.
  • As multiple users use same frequency band simultaneously it increases the performance of whole network.
  • To setup intracell and intercell interference NOMA provides nonorthogonal transmission on the transmitter end.
  • The primary fundamental of NOMA is to improve the spectrum efficiency by strengthening the ramification of receiver.

State-of-the-Art of Approaches

A plenty of approaches were developed to address the various issues in NOMA.

A novel approach to address the multiple receiving signals at the same frequency is proposed in [ 22 ]. In NOMA, multiple users use the same sub-carrier, which improves the fairness and throughput of the system. As a nonorthogonal method is used among multiple users, at the time of retrieving the user’s signal at the receiver’s end, joint processing is required. They proposed solutions to optimize the receiver and the radio resource allocation of uplink NOMA. Firstly, the authors proposed an iterative MUDD which utilizes the information produced by the channel decoder to improve the performance of the multiuser detector. After that, the author suggested a power allocation and novel subcarrier that enhances the users’ weighted sum rate for the NOMA scheme. Their proposed model showed that NOMA performed well as compared to OFDM in terms of fairness and efficiency.

In [ 53 ], the author’s reviewed a power-domain NOMA that uses superposition coding (SC) and successive interference cancellation (SIC) at the transmitter and the receiver end. Lots of analyses were held that described that NOMA effectively satisfies user data rate demands and network-level of 5G technologies. The paper presented a complete review of recent advances in the 5G NOMA system. It showed the comparative analysis regarding allocation procedures, user fairness, state-of-the-art efficiency evaluation, user pairing pattern, etc. The study also analyzes NOMA’s behavior when working with other wireless communication techniques, namely, beamforming, MIMO, cooperative connections, network, space-time coding, etc.

In [ 9 ], the authors proposed NOMA with MEC, which improves the QoS as well as reduces the latency of the 5G wireless network. This model increases the uplink NOMA by decreasing the user’s uplink energy consumption. They formulated an optimized NOMA framework that reduces the energy consumption of MEC by using computing and communication resource allocation, user clustering, and transmit powers.

In [ 10 ], the authors proposed a model which investigates outage probability under average channel state information CSI and data rate in full CSI to resolve the problem of optimal power allocation, which increase the NOMA downlink system among users. They developed simple low-complexity algorithms to provide the optimal solution. The obtained simulation results showed NOMA’s efficiency, achieving higher performance fairness compared to the TDMA configurations. It was observed from the results that NOMA, through the appropriate power amplifiers (PA), ensures the high-performance fairness requirement for the future 5G wireless communication networks.

In [ 56 ], researchers discussed that the NOMA technology and waveform modulation techniques had been used in the 5G mobile network. Therefore, this research gave a detailed survey of non-orthogonal waveform modulation techniques and NOMA schemes for next-generation mobile networks. By analyzing and comparing multiple access technologies, they considered the future evolution of these technologies for 5G mobile communication.

In [ 57 ], the authors surveyed non-orthogonal multiple access (NOMA) from the development phase to the recent developments. They have also compared NOMA techniques with traditional OMA techniques concerning information theory. The author discussed the NOMA schemes categorically as power and code domain, including the design principles, operating principles, and features. Comparison is based upon the system’s performance, spectral efficiency, and the receiver’s complexity. Also discussed are the future challenges, open issues, and their expectations of NOMA and how it will support the key requirements of 5G mobile communication systems with massive connectivity and low latency.

In [ 17 ], authors present the first review of an elementary NOMA model with two users, which clarify its central precepts. After that, a general design with multicarrier supports with a random number of users on each sub-carrier is analyzed. In performance evaluation with the existing approaches, resource sharing and multiple-input multiple-output NOMA are examined. Furthermore, they took the key elements of NOMA and its potential research demands. Finally, they reviewed the two-user SC-NOMA design and a multi-user MC-NOMA design to highlight NOMA’s basic approaches and conventions. They also present the research study about the performance examination, resource assignment, and MIMO in NOMA.

In this section, various works by different authors done on 5G NOMA technology is covered. Table 6 shows how other authors worked on the improvement of various parameters such as spectral efficiency, fairness, and computing capacity with 5G NOMA technology.

Summary of NOMA-based approaches in 5G technology.

4.3. 5G Millimeter Wave (mmWave)

Millimeter wave is an extremely high frequency band, which is very useful for 5G wireless networks. MmWave uses 30 GHz to 300 GHz spectrum band for transmission. The frequency band between 30 GHz to 300 GHz is known as mmWave because these waves have wavelengths between 1 to 10 mm. Till now radar systems and satellites are only using mmWave as these are very fast frequency bands which provide very high speed wireless communication. Many mobile network providers also started mmWave for transmitting data between base stations. Using two ways the speed of data transmission can be improved one is by increasing spectrum utilization and second is by increasing spectrum bandwidth. Out of these two approaches increasing bandwidth is quite easy and better. The frequency band below 5 GHz is very crowded as many technologies are using it so to boost up the data transmission rate 5G wireless network uses mmWave technology which instead of increasing spectrum utilization, increases the spectrum bandwidth [ 58 ]. To maximize the signal bandwidth in wireless communication the carrier frequency should also be increased by 5% because the signal bandwidth is directly proportional to carrier frequencies. The frequency band between 28 GHz to 60 GHz is very useful for 5G wireless communication as 28 GHz frequency band offers up to 1 GHz spectrum bandwidth and 60 GHz frequency band offers 2 GHz spectrum bandwidth. 4G LTE provides 2 GHz carrier frequency which offers only 100 MHz spectrum bandwidth. However, the use of mmWave increases the spectrum bandwidth 10 times, which leads to better transmission speeds [ 59 , 60 ].

Highlights of 5G mmWave are as follows:

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g004.jpg

Pictorial representation of millimeter wave.

  • The 5G mmWave offer three advantages: (1) MmWave is very less used new Band, (2) MmWave signals carry more data than lower frequency wave, and (3) MmWave can be incorporated with MIMO antenna with the potential to offer a higher magnitude capacity compared to current communication systems.

In [ 11 ], the authors presented the survey of mmWave communications for 5G. The advantage of mmWave communications is adaptability, i.e., it supports the architectures and protocols up-gradation, which consists of integrated circuits, systems, etc. The authors over-viewed the present solutions and examined them concerning effectiveness, performance, and complexity. They also discussed the open research issues of mmWave communications in 5G concerning the software-defined network (SDN) architecture, network state information, efficient regulation techniques, and the heterogeneous system.

In [ 61 ], the authors present the recent work done by investigators in 5G; they discussed the design issues and demands of mmWave 5G antennas for cellular handsets. After that, they designed a small size and low-profile 60 GHz array of antenna units that contain 3D planer mesh-grid antenna elements. For the future prospect, a framework is designed in which antenna components are used to operate cellular handsets on mmWave 5G smartphones. In addition, they cross-checked the mesh-grid array of antennas with the polarized beam for upcoming hardware challenges.

In [ 12 ], the authors considered the suitability of the mmWave band for 5G cellular systems. They suggested a resource allocation system for concurrent D2D communications in mmWave 5G cellular systems, and it improves network efficiency and maintains network connectivity. This research article can serve as guidance for simulating D2D communications in mmWave 5G cellular systems. Massive mmWave BS may be set up to obtain a high delivery rate and aggregate efficiency. Therefore, many wireless users can hand off frequently between the mmWave base terminals, and it emerges the demand to search the neighbor having better network connectivity.

In [ 62 ], the authors provided a brief description of the cellular spectrum which ranges from 1 GHz to 3 GHz and is very crowed. In addition, they presented various noteworthy factors to set up mmWave communications in 5G, namely, channel characteristics regarding mmWave signal attenuation due to free space propagation, atmospheric gaseous, and rain. In addition, hybrid beamforming architecture in the mmWave technique is analyzed. They also suggested methods for the blockage effect in mmWave communications due to penetration damage. Finally, the authors have studied designing the mmWave transmission with small beams in nonorthogonal device-to-device communication.

This section covered various works done on 5G mmWave technology. The Table 7 shows how different author’s worked on the improvement of various parameters i.e., transmission rate, coverage, and cost, with 5G mmWave technology.

Summary of existing mmWave-based approaches in 5G technology.

4.4. 5G IoT Based Approaches

The 5G mobile network plays a big role in developing the Internet of Things (IoT). IoT will connect lots of things with the internet like appliances, sensors, devices, objects, and applications. These applications will collect lots of data from different devices and sensors. 5G will provide very high speed internet connectivity for data collection, transmission, control, and processing. 5G is a flexible network with unused spectrum availability and it offers very low cost deployment that is why it is the most efficient technology for IoT [ 63 ]. In many areas, 5G provides benefits to IoT, and below are some examples:

Smart homes: smart home appliances and products are in demand these days. The 5G network makes smart homes more real as it offers high speed connectivity and monitoring of smart appliances. Smart home appliances are easily accessed and configured from remote locations using the 5G network, as it offers very high speed low latency communication.

Smart cities: 5G wireless network also helps in developing smart cities applications such as automatic traffic management, weather update, local area broadcasting, energy saving, efficient power supply, smart lighting system, water resource management, crowd management, emergency control, etc.

Industrial IoT: 5G wireless technology will provide lots of features for future industries such as safety, process tracking, smart packing, shipping, energy efficiency, automation of equipment, predictive maintenance and logistics. 5G smart sensor technology also offers smarter, safer, cost effective, and energy-saving industrial operation for industrial IoT.

Smart Farming: 5G technology will play a crucial role for agriculture and smart farming. 5G sensors and GPS technology will help farmers to track live attacks on crops and manage them quickly. These smart sensors can also be used for irrigation control, pest control, insect control, and electricity control.

Autonomous Driving: 5G wireless network offers very low latency high speed communication which is very significant for autonomous driving. It means self-driving cars will come to real life soon with 5G wireless networks. Using 5G autonomous cars can easily communicate with smart traffic signs, objects and other vehicles running on the road. 5G’s low latency feature makes self-driving more real as every millisecond is important for autonomous vehicles, decision taking is performed in microseconds to avoid accidents [ 64 ].

Highlights of 5G IoT are as follows:

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g005.jpg

Pictorial representation of IoT with 5G.

  • 5G with IoT is a new feature of next-generation mobile communication, which provides a high-speed internet connection between moderated devices. 5G IoT also offers smart homes, smart devices, sensors, smart transportation systems, smart industries, etc., for end-users to make them smarter.
  • IoT deals with moderate devices which connect through the internet. The approach of the IoT has made the consideration of the research associated with the outcome of providing wearable, smart-phones, sensors, smart transportation systems, smart devices, washing machines, tablets, etc., and these diverse systems are associated to a common interface with the intelligence to connect.
  • Significant IoT applications include private healthcare systems, traffic management, industrial management, and tactile internet, etc.

Plenty of approaches is devised to address the issues of IoT [ 14 , 65 , 66 ].

In [ 65 ], the paper focuses on 5G mobile systems due to the emerging trends and developing technologies, which results in the exponential traffic growth in IoT. The author surveyed the challenges and demands during deployment of the massive IoT applications with the main focus on mobile networking. The author reviewed the features of standard IoT infrastructure, along with the cellular-based, low-power wide-area technologies (LPWA) such as eMTC, extended coverage (EC)-GSM-IoT, as well as noncellular, low-power wide-area (LPWA) technologies such as SigFox, LoRa etc.

In [ 14 ], the authors presented how 5G technology copes with the various issues of IoT today. It provides a brief review of existing and forming 5G architectures. The survey indicates the role of 5G in the foundation of the IoT ecosystem. IoT and 5G can easily combine with improved wireless technologies to set up the same ecosystem that can fulfill the current requirement for IoT devices. 5G can alter nature and will help to expand the development of IoT devices. As the process of 5G unfolds, global associations will find essentials for setting up a cross-industry engagement in determining and enlarging the 5G system.

In [ 66 ], the author introduced an IoT authentication scheme in a 5G network, with more excellent reliability and dynamic. The scheme proposed a privacy-protected procedure for selecting slices; it provided an additional fog node for proper data transmission and service types of the subscribers, along with service-oriented authentication and key understanding to maintain the secrecy, precision of users, and confidentiality of service factors. Users anonymously identify the IoT servers and develop a vital channel for service accessibility and data cached on local fog nodes and remote IoT servers. The author performed a simulation to manifest the security and privacy preservation of the user over the network.

This section covered various works done on 5G IoT by multiple authors. Table 8 shows how different author’s worked on the improvement of numerous parameters, i.e., data rate, security requirement, and performance with 5G IoT.

Summary of IoT-based approaches in 5G technology.

4.5. Machine Learning Techniques for 5G

Various machine learning (ML) techniques were applied in 5G networks and mobile communication. It provides a solution to multiple complex problems, which requires a lot of hand-tuning. ML techniques can be broadly classified as supervised, unsupervised, and reinforcement learning. Let’s discuss each learning technique separately and where it impacts the 5G network.

Supervised Learning, where user works with labeled data; some 5G network problems can be further categorized as classification and regression problems. Some regression problems such as scheduling nodes in 5G and energy availability can be predicted using Linear Regression (LR) algorithm. To accurately predict the bandwidth and frequency allocation Statistical Logistic Regression (SLR) is applied. Some supervised classifiers are applied to predict the network demand and allocate network resources based on the connectivity performance; it signifies the topology setup and bit rates. Support Vector Machine (SVM) and NN-based approximation algorithms are used for channel learning based on observable channel state information. Deep Neural Network (DNN) is also employed to extract solutions for predicting beamforming vectors at the BS’s by taking mapping functions and uplink pilot signals into considerations.

In unsupervised Learning, where the user works with unlabeled data, various clustering techniques are applied to enhance network performance and connectivity without interruptions. K-means clustering reduces the data travel by storing data centers content into clusters. It optimizes the handover estimation based on mobility pattern and selection of relay nodes in the V2V network. Hierarchical clustering reduces network failure by detecting the intrusion in the mobile wireless network; unsupervised soft clustering helps in reducing latency by clustering fog nodes. The nonparametric Bayesian unsupervised learning technique reduces traffic in the network by actively serving the user’s requests and demands. Other unsupervised learning techniques such as Adversarial Auto Encoders (AAE) and Affinity Propagation Clustering techniques detect irregular behavior in the wireless spectrum and manage resources for ultradense small cells, respectively.

In case of an uncertain environment in the 5G wireless network, reinforcement learning (RL) techniques are employed to solve some problems. Actor-critic reinforcement learning is used for user scheduling and resource allocation in the network. Markov decision process (MDP) and Partially Observable MDP (POMDP) is used for Quality of Experience (QoE)-based handover decision-making for Hetnets. Controls packet call admission in HetNets and channel access process for secondary users in a Cognitive Radio Network (CRN). Deep RL is applied to decide the communication channel and mobility and speeds up the secondary user’s learning rate using an antijamming strategy. Deep RL is employed in various 5G network application parameters such as resource allocation and security [ 67 ]. Table 9 shows the state-of-the-art ML-based solution for 5G network.

The state-of-the-art ML-based solution for 5G network.

Highlights of machine learning techniques for 5G are as follows:

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g006.jpg

Pictorial representation of machine learning (ML) in 5G.

  • In ML, a model will be defined which fulfills the desired requirements through which desired results are obtained. In the later stage, it examines accuracy from obtained results.
  • ML plays a vital role in 5G network analysis for threat detection, network load prediction, final arrangement, and network formation. Searching for a better balance between power, length of antennas, area, and network thickness crossed with the spontaneous use of services in the universe of individual users and types of devices.

In [ 79 ], author’s firstly describes the demands for the traditional authentication procedures and benefits of intelligent authentication. The intelligent authentication method was established to improve security practice in 5G-and-beyond wireless communication systems. Thereafter, the machine learning paradigms for intelligent authentication were organized into parametric and non-parametric research methods, as well as supervised, unsupervised, and reinforcement learning approaches. As a outcome, machine learning techniques provide a new paradigm into authentication under diverse network conditions and unstable dynamics. In addition, prompt intelligence to the security management to obtain cost-effective, better reliable, model-free, continuous, and situation-aware authentication.

In [ 68 ], the authors proposed a machine learning-based model to predict the traffic load at a particular location. They used a mobile network traffic dataset to train a model that can calculate the total number of user requests at a time. To launch access and mobility management function (AMF) instances according to the requirement as there were no predictions of user request the performance automatically degrade as AMF does not handle these requests at a time. Earlier threshold-based techniques were used to predict the traffic load, but that approach took too much time; therefore, the authors proposed RNN algorithm-based ML to predict the traffic load, which gives efficient results.

In [ 15 ], authors discussed the issue of network slice admission, resource allocation among subscribers, and how to maximize the profit of infrastructure providers. The author proposed a network slice admission control algorithm based on SMDP (decision-making process) that guarantees the subscribers’ best acceptance policies and satisfiability (tenants). They also suggested novel N3AC, a neural network-based algorithm that optimizes performance under various configurations, significantly outperforms practical and straightforward approaches.

This section includes various works done on 5G ML by different authors. Table 10 shows the state-of-the-art work on the improvement of various parameters such as energy efficiency, Quality of Services (QoS), and latency with 5G ML.

The state-of-the-art ML-based approaches in 5G technology.

4.6. Optimization Techniques for 5G

Optimization techniques may be applied to capture NP-Complete or NP-Hard problems in 5G technology. This section briefly describes various research works suggested for 5G technology based on optimization techniques.

In [ 80 ], Massive MIMO technology is used in 5G mobile network to make it more flexible and scalable. The MIMO implementation in 5G needs a significant number of radio frequencies is required in the RF circuit that increases the cost and energy consumption of the 5G network. This paper provides a solution that increases the cost efficiency and energy efficiency with many radio frequency chains for a 5G wireless communication network. They give an optimized energy efficient technique for MIMO antenna and mmWave technologies based 5G mobile communication network. The proposed Energy Efficient Hybrid Precoding (EEHP) algorithm to increase the energy efficiency for the 5G wireless network. This algorithm minimizes the cost of an RF circuit with a large number of RF chains.

In [ 16 ], authors have discussed the growing demand for energy efficiency in the next-generation networks. In the last decade, they have figured out the things in wireless transmissions, which proved a change towards pursuing green communication for the next generation system. The importance of adopting the correct EE metric was also reviewed. Further, they worked through the different approaches that can be applied in the future for increasing the network’s energy and posed a summary of the work that was completed previously to enhance the energy productivity of the network using these capabilities. A system design for EE development using relay selection was also characterized, along with an observation of distinct algorithms applied for EE in relay-based ecosystems.

In [ 81 ], authors presented how AI-based approach is used to the setup of Self Organizing Network (SON) functionalities for radio access network (RAN) design and optimization. They used a machine learning approach to predict the results for 5G SON functionalities. Firstly, the input was taken from various sources; then, prediction and clustering-based machine learning models were applied to produce the results. Multiple AI-based devices were used to extract the knowledge analysis to execute SON functionalities smoothly. Based on results, they tested how self-optimization, self-testing, and self-designing are done for SON. The author also describes how the proposed mechanism classifies in different orders.

In [ 82 ], investigators examined the working of OFDM in various channel environments. They also figured out the changes in frame duration of the 5G TDD frame design. Subcarrier spacing is beneficial to obtain a small frame length with control overhead. They provided various techniques to reduce the growing guard period (GP) and cyclic prefix (CP) like complete utilization of multiple subcarrier spacing, management and data parts of frame at receiver end, various uses of timing advance (TA) or total control of flexible CP size.

This section includes various works that were done on 5G optimization by different authors. Table 11 shows how other authors worked on the improvement of multiple parameters such as energy efficiency, power optimization, and latency with 5G optimization.

Summary of Optimization Based Approaches in 5G Technology.

5. Description of Novel 5G Features over 4G

This section presents descriptions of various novel features of 5G, namely, the concept of small cell, beamforming, and MEC.

5.1. Small Cell

Small cells are low-powered cellular radio access nodes which work in the range of 10 meters to a few kilometers. Small cells play a very important role in implementation of the 5G wireless network. Small cells are low power base stations which cover small areas. Small cells are quite similar with all the previous cells used in various wireless networks. However, these cells have some advantages like they can work with low power and they are also capable of working with high data rates. Small cells help in rollout of 5G network with ultra high speed and low latency communication. Small cells in the 5G network use some new technologies like MIMO, beamforming, and mmWave for high speed data transmission. The design of small cells hardware is very simple so its implementation is quite easier and faster. There are three types of small cell tower available in the market. Femtocells, picocells, and microcells [ 83 ]. As shown in the Table 12 .

Types of Small cells.

MmWave is a very high band spectrum between 30 to 300 GHz. As it is a significantly less used spectrum, it provides very high-speed wireless communication. MmWave offers ultra-wide bandwidth for next-generation mobile networks. MmWave has lots of advantages, but it has some disadvantages, too, such as mmWave signals are very high-frequency signals, so they have more collision with obstacles in the air which cause the signals loses energy quickly. Buildings and trees also block MmWave signals, so these signals cover a shorter distance. To resolve these issues, multiple small cell stations are installed to cover the gap between end-user and base station [ 18 ]. Small cell covers a very shorter range, so the installation of a small cell depends on the population of a particular area. Generally, in a populated place, the distance between each small cell varies from 10 to 90 meters. In the survey [ 20 ], various authors implemented small cells with massive MIMO simultaneously. They also reviewed multiple technologies used in 5G like beamforming, small cell, massive MIMO, NOMA, device to device (D2D) communication. Various problems like interference management, spectral efficiency, resource management, energy efficiency, and backhauling are discussed. The author also gave a detailed presentation of all the issues occurring while implementing small cells with various 5G technologies. As shown in the Figure 7 , mmWave has a higher range, so it can be easily blocked by the obstacles as shown in Figure 7 a. This is one of the key concerns of millimeter-wave signal transmission. To solve this issue, the small cell can be placed at a short distance to transmit the signals easily, as shown in Figure 7 b.

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g007.jpg

Pictorial representation of communication with and without small cells.

5.2. Beamforming

Beamforming is a key technology of wireless networks which transmits the signals in a directional manner. 5G beamforming making a strong wireless connection toward a receiving end. In conventional systems when small cells are not using beamforming, moving signals to particular areas is quite difficult. Beamforming counter this issue using beamforming small cells are able to transmit the signals in particular direction towards a device like mobile phone, laptops, autonomous vehicle and IoT devices. Beamforming is improving the efficiency and saves the energy of the 5G network. Beamforming is broadly divided into three categories: Digital beamforming, analog beamforming and hybrid beamforming. Digital beamforming: multiuser MIMO is equal to digital beamforming which is mainly used in LTE Advanced Pro and in 5G NR. In digital beamforming the same frequency or time resources can be used to transmit the data to multiple users at the same time which improves the cell capacity of wireless networks. Analog Beamforming: In mmWave frequency range 5G NR analog beamforming is a very important approach which improves the coverage. In digital beamforming there are chances of high pathloss in mmWave as only one beam per set of antenna is formed. While the analog beamforming saves high pathloss in mmWave. Hybrid beamforming: hybrid beamforming is a combination of both analog beamforming and digital beamforming. In the implementation of MmWave in 5G network hybrid beamforming will be used [ 84 ].

Wireless signals in the 4G network are spreading in large areas, and nature is not Omnidirectional. Thus, energy depletes rapidly, and users who are accessing these signals also face interference problems. The beamforming technique is used in the 5G network to resolve this issue. In beamforming signals are directional. They move like a laser beam from the base station to the user, so signals seem to be traveling in an invisible cable. Beamforming helps achieve a faster data rate; as the signals are directional, it leads to less energy consumption and less interference. In [ 21 ], investigators evolve some techniques which reduce interference and increase system efficiency of the 5G mobile network. In this survey article, the authors covered various challenges faced while designing an optimized beamforming algorithm. Mainly focused on different design parameters such as performance evaluation and power consumption. In addition, they also described various issues related to beamforming like CSI, computation complexity, and antenna correlation. They also covered various research to cover how beamforming helps implement MIMO in next-generation mobile networks [ 85 ]. Figure 8 shows the pictorial representation of communication with and without using beamforming.

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g008.jpg

Pictorial Representation of communication with and without using beamforming.

5.3. Mobile Edge Computing

Mobile Edge Computing (MEC) [ 24 ]: MEC is an extended version of cloud computing that brings cloud resources closer to the end-user. When we talk about computing, the very first thing that comes to our mind is cloud computing. Cloud computing is a very famous technology that offers many services to end-user. Still, cloud computing has many drawbacks. The services available in the cloud are too far from end-users that create latency, and cloud user needs to download the complete application before use, which also increases the burden to the device [ 86 ]. MEC creates an edge between the end-user and cloud server, bringing cloud computing closer to the end-user. Now, all the services, namely, video conferencing, virtual software, etc., are offered by this edge that improves cloud computing performance. Another essential feature of MEC is that the application is split into two parts, which, first one is available at cloud server, and the second is at the user’s device. Therefore, the user need not download the complete application on his device that increases the performance of the end user’s device. Furthermore, MEC provides cloud services at very low latency and less bandwidth. In [ 23 , 87 ], the author’s investigation proved that successful deployment of MEC in 5G network increases the overall performance of 5G architecture. Graphical differentiation between cloud computing and mobile edge computing is presented in Figure 9 .

An external file that holds a picture, illustration, etc.
Object name is sensors-22-00026-g009.jpg

Pictorial representation of cloud computing vs. mobile edge computing.

6. 5G Security

Security is the key feature in the telecommunication network industry, which is necessary at various layers, to handle 5G network security in applications such as IoT, Digital forensics, IDS and many more [ 88 , 89 ]. The authors [ 90 ], discussed the background of 5G and its security concerns, challenges and future directions. The author also introduced the blockchain technology that can be incorporated with the IoT to overcome the challenges in IoT. The paper aims to create a security framework which can be incorporated with the LTE advanced network, and effective in terms of cost, deployment and QoS. In [ 91 ], author surveyed various form of attacks, the security challenges, security solutions with respect to the affected technology such as SDN, Network function virtualization (NFV), Mobile Clouds and MEC, and security standardizations of 5G, i.e., 3GPP, 5GPPP, Internet Engineering Task Force (IETF), Next Generation Mobile Networks (NGMN), European Telecommunications Standards Institute (ETSI). In [ 92 ], author elaborated various technological aspects, security issues and their existing solutions and also mentioned the new emerging technological paradigms for 5G security such as blockchain, quantum cryptography, AI, SDN, CPS, MEC, D2D. The author aims to create new security frameworks for 5G for further use of this technology in development of smart cities, transportation and healthcare. In [ 93 ], author analyzed the threats and dark threat, security aspects concerned with SDN and NFV, also their Commercial & Industrial Security Corporation (CISCO) 5G vision and new security innovations with respect to the new evolving architectures of 5G [ 94 ].

AuthenticationThe identification of the user in any network is made with the help of authentication. The different mobile network generations from 1G to 5G have used multiple techniques for user authentication. 5G utilizes the 5G Authentication and Key Agreement (AKA) authentication method, which shares a cryptographic key between user equipment (UE) and its home network and establishes a mutual authentication process between the both [ 95 ].

Access Control To restrict the accessibility in the network, 5G supports access control mechanisms to provide a secure and safe environment to the users and is controlled by network providers. 5G uses simple public key infrastructure (PKI) certificates for authenticating access in the 5G network. PKI put forward a secure and dynamic environment for the 5G network. The simple PKI technique provides flexibility to the 5G network; it can scale up and scale down as per the user traffic in the network [ 96 , 97 ].

Communication Security 5G deals to provide high data bandwidth, low latency, and better signal coverage. Therefore secure communication is the key concern in the 5G network. UE, mobile operators, core network, and access networks are the main focal point for the attackers in 5G communication. Some of the common attacks in communication at various segments are Botnet, message insertion, micro-cell, distributed denial of service (DDoS), and transport layer security (TLS)/secure sockets layer (SSL) attacks [ 98 , 99 ].

Encryption The confidentiality of the user and the network is done using encryption techniques. As 5G offers multiple services, end-to-end (E2E) encryption is the most suitable technique applied over various segments in the 5G network. Encryption forbids unauthorized access to the network and maintains the data privacy of the user. To encrypt the radio traffic at Packet Data Convergence Protocol (PDCP) layer, three 128-bits keys are applied at the user plane, nonaccess stratum (NAS), and access stratum (AS) [ 100 ].

7. Summary of 5G Technology Based on Above-Stated Challenges

In this section, various issues addressed by investigators in 5G technologies are presented in Table 13 . In addition, different parameters are considered, such as throughput, latency, energy efficiency, data rate, spectral efficiency, fairness & computing capacity, transmission rate, coverage, cost, security requirement, performance, QoS, power optimization, etc., indexed from R1 to R14.

Summary of 5G Technology above stated challenges (R1:Throughput, R2:Latency, R3:Energy Efficiency, R4:Data Rate, R5:Spectral efficiency, R6:Fairness & Computing Capacity, R7:Transmission Rate, R8:Coverage, R9:Cost, R10:Security requirement, R11:Performance, R12:Quality of Services (QoS), R13:Power Optimization).

8. Conclusions

This survey article illustrates the emergence of 5G, its evolution from 1G to 5G mobile network, applications, different research groups, their work, and the key features of 5G. It is not just a mobile broadband network, different from all the previous mobile network generations; it offers services like IoT, V2X, and Industry 4.0. This paper covers a detailed survey from multiple authors on different technologies in 5G, such as massive MIMO, Non-Orthogonal Multiple Access (NOMA), millimeter wave, small cell, MEC (Mobile Edge Computing), beamforming, optimization, and machine learning in 5G. After each section, a tabular comparison covers all the state-of-the-research held in these technologies. This survey also shows the importance of these newly added technologies and building a flexible, scalable, and reliable 5G network.

9. Future Findings

This article covers a detailed survey on the 5G mobile network and its features. These features make 5G more reliable, scalable, efficient at affordable rates. As discussed in the above sections, numerous technical challenges originate while implementing those features or providing services over a 5G mobile network. So, for future research directions, the research community can overcome these challenges while implementing these technologies (MIMO, NOMA, small cell, mmWave, beam-forming, MEC) over a 5G network. 5G communication will bring new improvements over the existing systems. Still, the current solutions cannot fulfill the autonomous system and future intelligence engineering requirements after a decade. There is no matter of discussion that 5G will provide better QoS and new features than 4G. But there is always room for improvement as the considerable growth of centralized data and autonomous industry 5G wireless networks will not be capable of fulfilling their demands in the future. So, we need to move on new wireless network technology that is named 6G. 6G wireless network will bring new heights in mobile generations, as it includes (i) massive human-to-machine communication, (ii) ubiquitous connectivity between the local device and cloud server, (iii) creation of data fusion technology for various mixed reality experiences and multiverps maps. (iv) Focus on sensing and actuation to control the network of the entire world. The 6G mobile network will offer new services with some other technologies; these services are 3D mapping, reality devices, smart homes, smart wearable, autonomous vehicles, artificial intelligence, and sense. It is expected that 6G will provide ultra-long-range communication with a very low latency of 1 ms. The per-user bit rate in a 6G wireless network will be approximately 1 Tbps, and it will also provide wireless communication, which is 1000 times faster than 5G networks.

Acknowledgments

Author contributions.

Conceptualization: R.D., I.Y., G.C., P.L. data gathering: R.D., G.C., P.L, I.Y. funding acquisition: I.Y. investigation: I.Y., G.C., G.P. methodology: R.D., I.Y., G.C., P.L., G.P., survey: I.Y., G.C., P.L, G.P., R.D. supervision: G.C., I.Y., G.P. validation: I.Y., G.P. visualization: R.D., I.Y., G.C., P.L. writing, original draft: R.D., I.Y., G.C., P.L., G.P. writing, review, and editing: I.Y., G.C., G.P. All authors have read and agreed to the published version of the manuscript.

This paper was supported by Soonchunhyang University.

Institutional Review Board Statement

Informed consent statement, data availability statement, conflicts of interest.

The authors declare no conflict of interest.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction to 5G and Beyond Network

Ieee account.

  • Change Username/Password
  • Update Address

Purchase Details

  • Payment Options
  • Order History
  • View Purchased Documents

Profile Information

  • Communications Preferences
  • Profession and Education
  • Technical Interests
  • US & Canada: +1 800 678 4333
  • Worldwide: +1 732 981 0060
  • Contact & Support
  • About IEEE Xplore
  • Accessibility
  • Terms of Use
  • Nondiscrimination Policy
  • Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

  • All Electronics Projects
  • Community Projects
  • NEW | DIY Webinars
  • Submit Your Project
  • Mini Projects
  • College Projects
  • Advanced Projects
  • AI/ML Projects
  • Reference Designs
  • S/W Projects
  • Tech Trends
  • Tech updates
  • Aerospace & Defence
  • Communication & Networks
  • Energy & Power
  • LEDs & Lighting
  • Testing Times
  • Thought Leaders
  • Industry Powered Content
  • NEW @ Electronicsforu.com
  • New Products
  • Innovative Components
  • Components Corner
  • Tech Updates
  • Press Releases
  • Electronics Calculators
  • NEW | Events
  • Premium Content
  • Startup Contests
  • Design Contests
  • Explore Components on DigiKey

Logo

An Introduction to 5G Technology

Z1Z_Telecom-Tower---

The WWWW allows a highly flexible network (flexible channel bandwidth between 5 and 20 MHz, optimally up to 40 MHz), and dynamic ad-hoc wireless network (DAWN). This technique employs intelligent antennae (e.g., switched beam antennae and adaptive array antennae) and the flexible modulation method, which helps in obtaining bidirectional high bandwidth, i.e., transfer of a large volume of broadcasting data in giga bytes, sustaining more than 60,000 connections and providing 25 Mbps connectivity.

Users of 5G technology can download an entire film to their tablets or laptops, including 3D movies; they can download games and avail of remote medical services. With the advent of 5G, Piconet and Bluetooth technologies will become outdated. The 5G mobile phones would be akin to tablet PCs, where you could watch TV channels at HD clarity without any interruption.

Key concepts in 5G technology Future mobile devices equipped with 5G technology will have:

Wearable devices with artificial intelligence (AI) Internet Protocol version 6 where the IP address is assigned according to location and the connected network. The ability to connect the user to different wireless access technologies, like 2.5G, 3G, 4G or 5G mobile networks, as well as Wi-Fi and WPAN (wireless personal area network)—or even any other technology to be developed in the future. This is basically a concurrent data transfer path technique. Smart radio. In order to share the same spectrum efficiently during a wireless transmission scheme, the system will adaptively find (search) unused spectrum. This dynamic radio resource management will be achieved in a distributed fashion and rely on software defined transmission. High altitude stratospheric platform station (HAPS) system. This is based on beam division multiple access (BDMA) and group relay techniques.

5G hardware Ultra wideband networks (UWB). It is already known that Wi-Fi, Wi-Max and cellular wide area communications are long-range radio technologies. But systems like WPAN need short-range radio technology, which helps in achieving higher bandwidths (around 4000 Mbps) but at low energy levels (UWB network) for relaying data from host devices to devices in the immediate vicinity, i.e., distances of around 10 metres or so. This higher bandwidth (4000 Mbps) level is almost 400 times faster than today’s wireless networks. Each network will be responsible for handling user-mobility while the user terminal will make the final choice among different wireless/mobile access network providers for a given service. However, there should be different radio interfaces for each radio access technology (RAT) in the mobile terminal.

Smart antennae. These include the following:

  • Switched beam antennae. This type of antenna supports radio positioning via angle of arrival (AOA). Information is collected from nearby devices.
  • Adaptive array antennae (Samsung has used 64 antennae elements). Such antennae promise to improve the capacity of wireless systems by providing improved safety through position-location capabilities. This technique rejects interference through spatial-altering-position location through direction-ending measurements and developing improved channel models through angle-of-arrival channel sounding measurement.
  • CDMA (code division multiple access) technique. This technique converts audio analogue input signals into digital signals (ADC) in combination with spread spectrum technology. The signal is transmitted using modulation according to some predefined code (pattern), and is demodulated using the same pattern since there can be billions of code patterns which can provide privacy and sufficient security.

5G software

  • 5G will be a single unified IP standard of different wireless networks and a seamless combination of broadband, including wireless technologies, such as IEEE802.11, LAN, WAN, PAN and WWWW.
  • 5G will enable software-defined radio, packet layers, implementation of packets, encryption flexibility, etc.

Chronological evolution of mobile technologies Although the 1G system (NMT) was introduced in 1981, 2G (GSM) started to come out in 1982, and 3G (W-CDMA)/FOMA first appeared in 2001, the complete development of these standards (e.g., IMT-2000 and UMTS) took almost 10 years. It is still unclear how much time it will take to launch the standards for 5G.

5G technology will ensure the convergence of networks, technologies, applications and services, and can serve as a flexible platform. Wireless carriers will have an opportunity to shorten their return-on-investment periods, improve operating efficiency and increase revenues. In short, this will change people’s lives in numerous ways.

The author is director R&D at Global Institute of Technology, Sitapura, Jaipur

Good article about 5G.

Thank you for your feedback.

nice, informative

SHARE YOUR THOUGHTS & COMMENTS Cancel reply

Log in to leave a comment

Electronics News

Power modules for better energy efficiency, silicon labs and arduino team up for easier iot development, wearable technology enables real-time emotion recognition, wi-fi 6 module for next-generation iot applications, truly innovative tech, world’s smallest high-current driver module, industry’s smallest package switching regulators, the ultra-low power neuromorphic microcontroller, industry-first 28nm radar one-chip family, most popular videos, how police trace cell phone location by mobile number or imei number, scada basics: an overview of automatic control systems, esp8266 ntp clock with youtube subscriber & views counter display, what is a magnetometer, electronics components, next generation of rugged rack and panel lmr range connectors, calculators, hex to ascii converter, symmetric stripline impedance calculator, broadside coupled trace inductance calculator, lenz’s law and faraday’s law calculator.

Electronics For You

Network Consists of Further Focused Websites (Channels)

electronicsforu

Inspired by our flagship publication

Electronics for you.

Magazine

  • Sample For Free
  • Subscribe For Print
  • Subscribe For Ezine

CHECKED OUT EFY EXPRESS?

Magazine

  • READ E-ZINE

© Copyright 2024 - EFY Group © Copyright 2022 - EFY Group

introduction about 5g technology

Gadget Insiders

T-Mobile Beats Verizon, AT&T and Others to Have The Fastest 5G Speeds

T -Mobile is not just participating in the 5G race; it’s setting the pace. With the introduction of the “uplink transmit” technique, the telecommunications giant has once again shattered expectations and records, pushing the boundaries of what’s possible with 5G technology.

This latest achievement not only underscores T-Mobile’s commitment to innovation but also reinforces its position as a leader in the U.S. telecom landscape.

Breaking New Ground in 5G Speeds

A new era of connectivity.

In a groundbreaking development, T-Mobile announced its latest achievement in 5G speeds, reaching uplink speeds of 345 Mbps on its 5G Standalone (SA) network. This milestone, achieved through the novel “Uplink Transmit” (UL Tx) technique, showcases the company’s relentless pursuit of enhancing network performance and user experience.

The company’s approach likened to “adding new faster lanes with spare capacity for traffic to zoom faster than ever,” represents a significant leap forward in 5G connectivity.

The Power of Innovation

The success of this new speed record is attributed to the synergy of carrier aggregation and SU-MIMO technology. By combining different spectrum channels and enabling multiple data streams simultaneously, the telecom giant  has managed to boost uplink speeds by 25% compared to its previous best.

This advancement is not just about breaking records; it’s about transforming the way we connect, share, and communicate.

Uplink Transmit: A Game-Changer for 5G

T-Mobile’s adoption of the “Uplink Transmit” technique is a testament to its strategy of leveraging cutting-edge technologies to elevate network performance. Utilizing more channels than ever before, this approach promises increased capacity and faster speeds for users across North America. Powered by a flagship Snapdragon Modem-RF system from Qualcomm, this technique is poised to redefine the standards of mobile connectivity.

Maintaining the Lead in 5G Performance

Unmatched speeds and coverage.

T-Mobile’s dominance in the 5G domain is further evidenced by the latest Ookla report, which positions the carrier at the forefront of 5G speeds among the Big Three telcos in the United States. With impressive metrics like a 151.47 Mbps download speed and a 216.56 5G Median speed, T-Mobile continues to deliver unparalleled service to its subscribers.

Expanding Horizons with SpaceX and Starlink

Looking beyond terrestrial achievements, the telecom giant is exploring new frontiers in connectivity through a strategic partnership with Elon Musk’s SpaceX and Starlink.

This collaboration aims to extend T-Mobile’s reach, offering 5G capabilities directly from satellites, and ensuring that users, regardless of their location, can benefit from the latest in telecom technology.

Looking Ahead: The Future of 5G with T-Mobile

As T-Mobile forges ahead with its innovative approach to 5G technology, it’s clear that the company is not just focused on today’s achievements but is also laying the groundwork for tomorrow’s breakthroughs. With each milestone, the company is not only enhancing its network but also shaping the future of telecommunications.

As we move forward, one thing is certain: the journey of 5G evolution with T-Mobile is just getting started, promising faster speeds, broader coverage, and endless possibilities.

The future of 5G: T-Mobile’s groundbreaking approach promises unparalleled speeds and capacity

TechBullion

TechBullion

Top technology trends shaping the future of business in 2024.

introduction about 5g technology

Introduction:

In the dynamic landscape of business, staying ahead of technological trends is crucial for sustained growth and competitiveness. As we step into 2024, the intersection of innovation and business is marked by transformative technologies that promise to reshape industries and redefine the way organizations operate. In this exploration, we delve into the top technology trends that are set to shape the future of business in 2024.

1. Artificial Intelligence (AI) Integration for Smarter Decision-Making:

Artificial Intelligence continues to be a driving force in business evolution, with its impact expected to intensify in 2024. From predictive analytics to natural language processing, AI is set to empower organizations with data-driven insights, enhancing decision-making processes and operational efficiency.

Applications:

Predictive Analytics for Market Trends Automated Customer Support and Chatbots AI-Driven Personalization in Marketing.

2. Internet of Things (IoT) Revolutionizing Connectivity:

The Internet of Things is ushering in an era of interconnected devices, creating a network where physical objects communicate and share data. In 2024, IoT is expected to optimize processes, improve resource management, and enhance the overall efficiency of businesses.

Smart Supply Chain Management IoT-Enabled Asset Tracking Energy Management and Sustainability Solutions.

3. Blockchain for Enhanced Security and Transparency:

Blockchain technology, known for its decentralized and secure nature, is becoming increasingly integral to business operations. In 2024, businesses are set to leverage blockchain for secure transactions, transparent supply chains, and to combat cyber threats.

Secure and Transparent Financial Transactions Supply Chain Traceability and Authenticity Smart Contracts for Automated Agreement Execution.

4. 5G Connectivity Transforming Communication and Data Transfer:

The rollout of 5G technology is poised to revolutionize communication and data transfer capabilities. With faster speeds and lower latency, businesses can expect enhanced connectivity, paving the way for innovative applications and improved customer experiences.

Ultra-Fast Data Transfer for Remote Work Augmented Reality (AR) and Virtual Reality (VR) Applications Real-time Data Analytics and Decision-Making.

5. Edge Computing for Faster Processing and Reduced Latency:

Edge computing, decentralizing computing power by bringing it closer to the data source, is gaining prominence. In 2024, businesses will utilize edge computing to process data in real-time, reducing latency and enhancing the efficiency of applications.

Faster Processing for Internet of Things (IoT) Devices Real-Time Analytics for Improved Decision-Making Enhanced Security Through Localized Data Processing.

6. Augmented Reality (AR) and Virtual Reality (VR) Enhancing Experiences:

AR and VR technologies are transforming the way businesses engage with customers and employees. In 2024, businesses will harness the immersive power of AR and VR for enhanced training, virtual product experiences, and interactive marketing campaigns.

Virtual Product Showcases and Try-Before-You-Buy Experiences Employee Training Through Immersive Simulations AR-enhanced Marketing and Advertising Campaigns.

7. Quantum Computing for Complex Problem Solving:

Quantum computing, with its ability to process complex problems at unprecedented speeds, is emerging as a game-changer for businesses. In 2024, organizations will explore quantum computing applications for solving intricate problems and optimizing various processes.

Advanced Data Analysis and Modeling Cryptography and Enhanced Security Measures Optimization of Supply Chain and Logistics.

8. Cybersecurity Measures Against Evolving Threats:

As technology evolves, so do cyber threats. In 2024, businesses will prioritize robust cybersecurity measures to protect sensitive data and maintain the trust of customers. From AI-driven threat detection to multi-factor authentication, a proactive approach to cybersecurity will be paramount.

AI-Enhanced Threat Detection and Response Zero Trust Security Frameworks Blockchain for Secure Data Transactions.

9. Cloud Computing for Scalability and Flexibility:

Cloud computing remains a cornerstone of business technology infrastructure. In 2024, businesses will continue to leverage the cloud for scalable and flexible solutions, enabling remote work, efficient data storage, and cost-effective application deployment.

Remote Work Solutions and Collaboration Platforms Scalable Storage and Data Management Cloud-based Applications for Improved Accessibility.

10. Robotics and Automation Streamlining Operations:

Robotics and automation are set to play a crucial role in streamlining business operations. From manufacturing to customer service, businesses will deploy robots and automation technologies to enhance efficiency and reduce manual labor.

Robotic Process Automation (RPA) for Repetitive Tasks Autonomous Vehicles for Logistics and Transportation Collaborative Robots (Cobots) for Enhanced Human-Machine Interaction.

11. Biometric Technology for Secure Authentication:

Biometric technology, including facial recognition and fingerprint scanning, is becoming integral to secure authentication processes. In 2024, businesses will implement biometric solutions to enhance security measures and ensure a seamless user experience.

Biometric Access Control Systems Secure Transactions and Financial Authentication Employee Authentication for Enhanced Security.

Conclusion:

As businesses navigate the ever-evolving landscape of technology trends in 2024, the integration of these transformative technologies will shape a new era of innovation and efficiency. From the power of AI-driven insights to the connectivity revolution brought by 5G, businesses that embrace and adapt to these trends will position themselves at the forefront of their industries. The future of business is undeniably tech-led, and organizations that leverage these top technology trends will not only survive but thrive in the dynamic digital landscape of 2024 and beyond.

introduction about 5g technology

Recommended for you

introduction about 5g technology

Trending Stories

introduction about 5g technology

8 Key Questions Every Entrepreneur Should Ask Their Business Coach

With increasing competition in the business landscape, entrepreneurs are constantly faced with challenges and...

Promo.com Launches PromoAI Copilot

Promo.com Launches PromoAI Copilot: A Revolutionary Tool for Social Video Creation.

In  a world where social media marketing is becoming increasingly important for businesses of...

Gifting Game for Gamer

The Ultimate Gift Hack: Level Up Your Gifting Game for Gamers, Tune Junkies, and Procrastinators

So, you’re on the hunt for the perfect gift, and your clock is ticking...

travel technology software

Top Travel Trends: How Technology is Revolutionizing the Way We Explore

Introduction: In the dynamic landscape of travel, technology plays a pivotal role in shaping...

introduction about 5g technology

Brock Pierce, Tether and Block.one Co-Founder, to join EstateX as Strategic Investor and Advisor

Puerto Rico, February 20, 2024 – EstateX, a distinguished multi-award-winning project at the forefront...

Top crypto coin

Everlodge (ELDG) Edges Decentraland (MANA) With RWAs-Based Token, While Polygon (MATIC) Price Soars in Bumby Uptrend

Everlodge, a new player in the real estate sector, is revolutionizing the market with...

introduction about 5g technology

Cloud Security Unveiled- Comprehensive Insights for 2024

The realm of cloud computing has revolutionized the way businesses operate, but with these...

introduction about 5g technology

Singapore’s Leading Services For Recovering Scammed Crypto Money – How To Recover Cryptocurrency in 2024 – Crypto Crime Investigation (C.C.I)

In the ever-evolving landscape of digital currencies, the rising occurrences of cryptocurrency theft and...

introduction about 5g technology

Why KYB Should Be a Priority for Fintech Startups Right From the Start

Fintech startups are disrupting the financial services industry in exciting new ways. However, with...

Vacation Rental

Top Vacation Rental Software You Need to Have

Vacation rental software, Airbnb management software, short-term rental software, it goes by different names...

Call Center Operations in Southeast Asia

How Voctiv is Transforming Call Center Operations in Southeast Asia with Conversational AI

Voctiv is revolutionizing the way businesses interact with their customers in Southeast Asia. Its...

Blockchain and DeFi (decentralized finance)

Revolutionizing Finance Innovation with Blockchain and DeFi

There is a revolution happening in the current financial landscape, driven by the emergence...

BlockDAG

BlockDAG Breaks The Internet With A $600 Million Roadmap Surpassing Memeinator and Polkadot

The cryptocurrency landscape is undergoing significant shifts, with the increasing popularity of Memeinator and...

introduction about 5g technology

Orfinex Prime: A New Era in Forex Trading with FSCA License in South Africa

Orfinex Prime (Pty) Ltd, a burgeoning force in the CFD and FX trading sphere,...

introduction about 5g technology

Loaning platform Kelexo (KLXO) web3 presale secures more Shiba inu (SHIB) & Binance (BNB) investment for predicted 22x gains

The decentralized digital future powered by blockchain technology is rapidly taking shape across key...

nutrition technology software

Top Nutrition Blogs You Should Follow for the Latest Tech-Driven Health Tips

Introduction: In the dynamic landscape of nutrition and wellness, staying abreast of the latest...

Shiba Inu (SHIB) early investors love revolutionary Kelexo (KLXO) presale as more Chainlink (LINK) investors get in early!

Shiba Inu (SHIB) early investors love revolutionary Kelexo (KLXO) presale as more Chainlink (LINK) investors get in early!

Early investors in Shiba Inu (SHIB) and Chainlink (LINK) are showing keen interest in...

introduction about 5g technology

Cryptocurrency Unleashed: Exploring the Digital Frontier

The Evolution of Cryptocurrency Cryptocurrency, a digital or virtual form of currency, has revolutionized...

introduction about 5g technology

Pirlo-Endorsed CoinW Uplifts the Game: A Legendary Crypto Exchange Takes Center Stage in the Next Level of Innovation

At both the club and international level of football, the name Andrea Pirlo resonates...

bitcoin technology software

Security in the Crypto World: Top Bitcoin Protection Measures

Introduction: As Bitcoin continues to gain prominence in the financial landscape, ensuring the security...

Like Us On Facebook

Latest interview.

Sedat Kilic is a Senior Mechanical Engineer and Project Manager

Interview with Sedat Kilic, Leading Engineering Innovation in the Global Energy Industry

Sedat Kilic is a Senior Mechanical Engineer and Project Manager specializing in computer-aided design (CAD), planning, manufacture, testing, training, and the implementation...

Latest Press Release

DREO to show innovative smart product ecosystem

DREO Announces Inaugural Appearance At CES 2024 Showcasing Future Innovations

DREO to show innovative smart product ecosystem aimed at creating comfortable lives, highlighting award-winning kitchen appliances and a new drink & beverage...

Pin It on Pinterest

IMAGES

  1. 5G and the Future of Connectivity ?

    introduction about 5g technology

  2. 5G Technology: What Is 5G & Why Does Everyone Care So Much About It

    introduction about 5g technology

  3. What is 5G? An Introduction to 5G Networks and Applications

    introduction about 5g technology

  4. 5G PowerPoint Template Presentation and Google Slides

    introduction about 5g technology

  5. Terminalworks Blog

    introduction about 5g technology

  6. 5G Technologies, Key For More Effective Mission Critical Communications

    introduction about 5g technology

VIDEO

  1. The Impact of 5G Technology on Business Operations

  2. Imapct of 5G Technology on the Engineering Industry

  3. The Rise of 5G Technology and Its Impact on Connectivity||TECH BY AV||#technology #tech

  4. 5G Technology: Powering the Next Generation of Connectivity #futuristictechnology #day21

  5. 6G technology|| how 6G technology will work|| Future of 6G technology|| Research and Technology

  6. 5G Unveiled: The Future is Now!

COMMENTS

  1. What is 5G?

    A: 5G is the 5th generation mobile network. It is a new global wireless standard after 1G, 2G, 3G, and 4G networks. 5G enables a new kind of network that is designed to connect virtually everyone and everything together including machines, objects, and devices.

  2. What is 5G? The Complete Guide to When, Why, and How

    To keep up with the demand, the mobile industry introduced 5G —so named because it's the fifth generation of wireless networking technology. 5G brings faster speeds of up to 10 gigabits per...

  3. What Is 5G?

    5G technology has a theoretical peak speed of 20 Gbps, while the peak speed of 4G is only 1 Gbps. 5G also promises lower latency, which can improve the performance of business applications as well as other digital experiences (such as online gaming, videoconferencing, and self-driving cars).

  4. 5G

    In telecommunications, 5G is the fifth-generation technology standard for cellular networks, which cellular phone companies began deploying worldwide in 2019, and is the successor to 4G technology that provides connectivity to most current mobile phones.

  5. What is 5G technology?

    Existing cellular networks are not able to keep up with the explosive growth in the number of connected devices, from smart refrigerators to devices monitoring battery levels on manufacturing shop floors. 5G will unlock the potential of IoT by enabling exponentially more connections at very low power. Mission-critical control.

  6. 5G explained: What it is, who has 5G, and how much faster is it ...

    Published March 6, 2020 What is 5G? 5G is next generation wireless network technology that's expected to change the way people live and work.

  7. What Is 5G?

    News 5G What Is 5G? All of the US carriers have now launched some form of 5G cellular network. But what exactly is 5G, and how fast is it compared with 4G? Here's what you need to know. By...

  8. 5G

    5 th Generation Mobile Network or simply 5G is the forthcoming revolution of mobile technology. The features and its usability are much beyond the expectation of a normal human being. With its ultra-high speed, it is potential enough to change the meaning of a cell phone usability.

  9. What is 5G Technology and How Will It Transform Our Lives?

    The biggest feature of 5G is that cell sites will have access to short-range, "high-band" airwaves that were inaccessible with 4G LTE technology. Moreover, 5G lets devices use wider channels ...

  10. 5G

    Introduced in 2019 and now globally deployed, 5G delivers faster connectivity with higher bandwidth and "lower latency" (shorter delay times), improving the performance of phone calls, streaming, videoconferencing, gaming, and business applications as well as the responsiveness of connected systems and mobile apps. 5G can double the download spe...

  11. What is 5G Technology and How Does it Work?

    5G is the fifth generation of mobile networks, following on from previous generations; 2G, 3G and 4G. 5G is set to offer much faster connection speeds than previous networks. Also, being more reliable with lower response times and greater capacity.

  12. What is 5G? An Introduction to 5G Networks and Applications

    The 5G era has officially begun when Korea and the United States competed to be the first to commercialize 5G business in April, 2019. 5G is to become the revolutionary technology that could change the daily lives of billions of people around the world.

  13. What is 5G Wireless Technology and How it Works?

    So let's start at the beginning with an Introduction to 5G Wireless Technology as we try to understand this incredible new technology in detail. 5G Wireless Technology is the 5th generation of mobile networks and an evolution from the current 4G LTE networks.

  14. PDF 5G: The Basics Infographic

    The fifth generation (5G) of wireless technology represents a complete transformation of telecommunication networks, introducing a wealth of benefits that will pave the way for new capabilities and support connectivity for applications like smart cities, autonomous vehicles, remote healthcare, and much more. Here's how it will work: USE CASES

  15. An Introduction to 5G Wireless Networks

    An Introduction to 5G Wireless Networks book is for students, engineers, managers and for marketing/sales executives, to develop a good understanding of the 5G technology. This book covers the 5G architecture, 5G New Radio (NR), 5G Next Generation Core (NG-Core), Network Slicing, Virtualization of 5G Components, Multi-access Edge Computing (MEC) and the various 5G use cases.

  16. A brief history of 5G

    When the fifth generation of mobile communications known as 5G debuted in 2019, it was like catching the proverbial lightning in the bottle. The technology promised faster data speeds, better ...

  17. Study and Investigation on 5G Technology: A Systematic Review

    In wireless communication, Fifth Generation (5G) Technology is a recent generation of mobile networks. In this paper, evaluations in the field of mobile communication technology are presented. In each evolution, multiple challenges were faced that were captured with the help of next-generation mobile networks.

  18. Introduction to 5G

    Course details 5G—the fifth generation of wireless technology—promises connectivity benefits that will transform the way we live and work. In this course, instructor Mischa Dohler helps you...

  19. Introduction to 5G and Beyond Network

    The physical layer in 5G will change dramatically, specifically the 5G new radios (NR), which includes the new multiple access technology, the new air interface, and a combination of several existing techniques. Channel coding is instrumental for achieving higher capacity and reliability. Polar codes have been adopted in 5G standardization process.

  20. An Introduction to 5G Technology

    5G will be a single unified IP standard of different wireless networks and a seamless combination of broadband, including wireless technologies, such as IEEE802.11, LAN, WAN, PAN and WWWW. 5G will enable software-defined radio, packet layers, implementation of packets, encryption flexibility, etc.

  21. Introduction to 5G Networks: Technology and Architecture

    Enhanced Speeds: 5G networks can deliver ultra-fast speeds, reaching up to 10 gigabits per second (Gbps). This means you can download movies, stream high-definition videos, and play online games without any lag or buffering. Low Latency: With 5G's low latency, delays in data transmission are minimised, enabling real-time interactions and ultra ...

  22. Free 5G Tutorial

    Instructors. 5G technology. The need of 5G. Difference between 5G, LTE and with the pervious generation. New features in 5G Versus 4G. 5G Use Cases. 5G requirement in terms of Performance, Low latency and High data throughput. Organization involved in 5G standards. 5G standards timeline.

  23. A Brief Introduction To 5G Technology

    Non-Standalone 5G NR will provide increased data-bandwidth by using two new radio frequency ranges: Frequency Range 1 (450 MHz to 6000 MHz) — This band overlaps with 4G LTE frequencies and is ...

  24. T-Mobile Beats Verizon, AT&T and Others to Have The Fastest 5G Speeds

    T-Mobile is not just participating in the 5G race; it's setting the pace. With the introduction of the "uplink transmit" technique, the telecommunications giant has once again shattered ...

  25. Top Technology Trends Shaping the Future of Business in 2024

    Introduction: In the dynamic landscape of business, staying ahead of technological trends is crucial for sustained growth and competitiveness. ... The rollout of 5G technology is poised to revolutionize communication and data transfer capabilities. With faster speeds and lower latency, businesses can expect enhanced connectivity, paving the way ...