Reading & Math for K-5

- Kindergarten
- Learning numbers
- Comparing numbers
- Place Value
- Roman numerals
- Subtraction
- Multiplication
- Order of operations
- Drills & practice
- Measurement
- Factoring & prime factors
- Proportions
- Shape & geometry
- Data & graphing
- Word problems
- Children's stories
- Leveled Stories
- Context clues
- Cause & effect
- Compare & contrast
- Fact vs. fiction
- Fact vs. opinion
- Main idea & details
- Story elements
- Conclusions & inferences
- Sounds & phonics
- Words & vocabulary
- Reading comprehension
- Early writing
- Numbers & counting
- Simple math
- Social skills
- Other activities
- Dolch sight words
- Fry sight words
- Multiple meaning words
- Prefixes & suffixes
- Vocabulary cards
- Other parts of speech
- Punctuation
- Capitalization
- Cursive alphabet
- Cursive letters
- Cursive letter joins
- Cursive words
- Cursive sentences
- Cursive passages
- Grammar & Writing

Breadcrumbs

- Word Problems

Download & Print From only $2.60

## Mixed decimals word problems

Add, subtract and multiply decimals.

These grade 5 math word problems involve the addition, subtraction and multiplication of decimal numbers with one or two decimal digits . Some problems may have more than 2 terms, include superfluous data or require the conversion of fractions with denominators of 10 or 100.

These worksheets are available to members only.

Join K5 to save time, skip ads and access more content. Learn More

## More word problem worksheets

Explore all of our math word problem worksheets , from kindergarten through grade 5.

What is K5?

K5 Learning offers free worksheets , flashcards and inexpensive workbooks for kids in kindergarten to grade 5. Become a member to access additional content and skip ads.

Our members helped us give away millions of worksheets last year.

We provide free educational materials to parents and teachers in over 100 countries. If you can, please consider purchasing a membership ($24/year) to support our efforts.

Members skip ads and access exclusive features.

Learn about member benefits

This content is available to members only.

- Forgot Password?

## Decimals Worksheets

Further down the page, rounding, comparing and ordering decimals worksheets allow students to gain more comfort with decimals before they move on to performing operations with decimals. There are many operations with decimals worksheets throughout the page. It would be a really good idea for students to have a strong knowledge of addition, subtraction, multiplication and division before attempting these questions. At the end of the page, you will find decimal numbers used in order of operations questions.

## Most Popular Decimals Worksheets this Week

## General Use Printables

General use decimal printables are used in a variety of contexts and assist students in completing math questions related to decimals.

## Grids and charts useful for learning decimals

The thousandths grid is a useful tool in representing decimals. Each small rectangle represents a thousandth. Each square represents a hundredth. Each row or column represents a tenth. The entire grid represents one whole. The hundredths grid can be used to model percents or decimals. The decimal place value chart is a tool used with students who are first learning place value related to decimals or for those students who have difficulty with place value when working with decimals.

## Expanded Form with Decimals

Expanded form with decimals worksheets including converting from standard to expanded form and from expanded form to standard form.

## Writing standard form decimal numbers in expanded form

For students who have difficulty with expanded form, try familiarizing them with the decimal place value chart, and allow them to use it when converting standard form numbers to expanded form. There are actually five ways (two more than with integers) to write expanded form for decimals, and which one you use depends on your application or preference. Here is a quick summary of the various ways using the decimal number 1.23. 1. Expanded Form using decimals: 1 + 0.2 + 0.03 2. Expanded Form using fractions: 1 + 2 ⁄ 10 + 3 ⁄ 100 3. Expanded Factors Form using decimals: (1 × 1) + (2 × 0.1) + (3 × 0.01) 4. Expanded Factors Form using fractions: (1 × 1) + (2 × 1 ⁄ 10 ) + (3 × 1 ⁄ 100 ) 5. Expanded Exponential Form: (1 × 10 0 ) + (2 × 10 -1 ) + (3 × 10 -2 )

## Writing expanded form decimal numbers in standard form

Of course, being able to convert numbers already in expanded form to standard form is also important. All five versions of decimal expanded form are included in these worksheets.

## Rounding Decimals Worksheets

Rounding decimals worksheets with options for rounding a variety of decimal numbers to a variety of places.

## Rounding decimals

Rounding decimals is similar to rounding whole numbers; you have to know your place value! When learning about rounding, it is also useful to learn about truncating since it may help students to round properly. A simple strategy for rounding involves truncating, using the digits after the truncation to determine whether the new terminating digit remains the same or gets incremented, then taking action by incrementing if necessary and throwing away the rest. Here is a simple example: Round 4.567 to the nearest tenth. First, truncate the number after the tenths place 4.5|67. Next, look at the truncated part (67). Is it more than half way to 99 (i.e. 50 or more)? It is, so the decision will be to increment. Lastly, increment the tenths value by 1 to get 4.6. Of course, the situation gets a little more complicated if the terminating digit is a 9. In that case, some regrouping might be necessary. For example: Round 6.959 to the nearest tenth. Truncate: 6.9|59. Decide to increment since 59 is more than half way to 99. Incrementing results in the necessity to regroup the tenths into an extra one whole, so the result is 7.0. Watch that students do not write 6.10. You will want to correct them right away in that case. One last note: if there are three truncated digits then the question becomes is the number more than half way to 999. Likewise, for one digit; is the number more than half way to 9. And so on...

We should also mention that in some scientific and mathematical "circles," rounding is slightly different "on a 5". For example, most people would round up on a 5 such as: 6.5 --> 7; 3.555 --> 3.56; 0.60500 --> 0.61; etc. A different way to round on a 5, however, is to round to the nearest even number, so 5.5 would be rounded up to 6, but 8.5 would be rounded down to 8. The main reason for this is not to skew the results of a large number of rounding events. If you always round up on a 5, on average, you will have slightly higher results than you should. Because most pre-college students round up on a 5, that is what we have done in the worksheets that follow.

## Comparing and Ordering Decimals Worksheets

Comparing and ordering decimals worksheets to help students recognize ordinality in decimal numbers.

The comparing decimals worksheets have students compare pairs of numbers and the ordering decimals worksheets have students compare a list of numbers by sorting them.

## Comparing decimals worksheets.

Students who have mastered comparing whole numbers should find comparing decimals to be fairly easy. The easiest strategy is to compare the numbers before the decimal (the whole number part) first and only compare the decimal parts if the whole number parts are equal. These sorts of questions allow teachers/parents to get a good idea of whether students have grasped the concept of decimals or not. For example, if a student thinks that 4.93 is greater than 8.7, then they might need a little more instruction in place value. Close numbers means that some care was taken to make the numbers look similar. For example, they could be close in value, e.g. 3.3. and 3.4 or one of the digits might be changed as in 5.86 and 6.86.

## Ordering or sorting decimal numbers

Ordering decimals is very much like comparing decimals except there are more than two numbers. Generally, students determine the least (or greatest) decimal to start, cross it off the list then repeat the process to find the next lowest/greatest until they get to the last number. Checking the list at the end is always a good idea.

## Converting Decimals to Fractions and other Number Formats

Converting decimals worksheets mainly for converting between decimals and fractions but also to percents and ratios.

## Converting decimals to fractions and other number formats

There are many good reasons for converting decimals to other number formats. Dealing with a fraction in operations is often easier than the equivalent decimal. Consider 0.333... which is equivalent to 1/3. Multiplying 300 by 0.333... is difficult, but multiplying 300 by 1/3 is super easy! Students should be familiar with some of the more common fraction/decimal conversions, so they can switch back and forth as needed.

## Adding and Subtracting Decimals Worksheets

Adding and subtracting decimals worksheets with various difficulties including adding and subtracting by themselves and also mixed on the page.

## Adding Decimals

Try the following mental addition strategy for decimals. Begin by ignoring the decimals in the addition question. Add the numbers as if they were whole numbers. For example, 3.25 + 4.98 could be viewed as 325 + 498 = 823. Use an estimate to decide where to place the decimal. In the example, 3.25 + 4.98 is approximately 3 + 5 = 8, so the decimal in the sum must go between the 8 and the 2 (i.e. 8.23)

## Subtracting decimals worksheets

Base ten blocks can be used for decimal subtraction. Just redefine the blocks, so the big block is a one, the flat is a tenth, the rod is a hundredth and the little cube is a thousandth. Model and subtract decimals using base ten blocks, so students can "see" how decimals really work.

## Horizontally arranged adding and subtracting decimals worksheets

Adding and subtracting decimals is fairly straightforward when all the decimals are lined up. With the questions arranged horizontally, students are challenged to understand place value as it relates to decimals. A wonderful strategy for placing the decimal is to use estimation. For example if the question is 49.2 + 20.1, the answer without the decimal is 693. Estimate by rounding 49.2 to 50 and 20.1 to 20. 50 + 20 = 70. The decimal in 693 must be placed between the 9 and the 3 as in 69.3 to make the number close to the estimate of 70.

The above strategy will go a long way in students understanding operations with decimals, but it is also important that they have a strong foundation in place value and a proficiency with efficient strategies to be completely successful with these questions. As with any math skill, it is not wise to present this to students until they have the necessary prerequisite skills and knowledge.

## Multiplying and Dividing Decimals Worksheets

Multiplying and dividing decimals worksheets with a variety of difficulty levels.

## Multiplying decimals by whole numbers

Multiplying decimals by whole numbers is very much like multiplying whole numbers except there is a decimal to deal with. Although students might initially have trouble with it, through the power of rounding and estimating, they can generally get it quite quickly. Many teachers will tell students to ignore the decimal and multiply the numbers just like they would whole numbers. This is a good strategy to use. Figuring out where the decimal goes at the end can be accomplished by counting how many decimal places were in the original question and giving the answer that many decimal places. To better understand this method, students can round the two factors and multiply in their head to get an estimate then place the decimal based on their estimate. For example, multiplying 9.84 × 91, students could first round the numbers to 10 and 91 (keep 91 since multiplying by 10 is easy) then get an estimate of 910. Actually multiplying (ignoring the decimal) gets you 89544. To get that number close to 910, the decimal needs to go between the 5 and the 4, thus 895.44. Note that there are two decimal places in the factors and two decimal places in the answer, but estimating made it more understandable rather than just a method.

## Multiplying by decimal numbers

## Multiplying decimals in various ranges

## Dividing decimals by whole numbers

## Dividing with quotients that work out nicely

In case you aren't familiar with dividing with a decimal divisor, the general method for completing questions is by getting rid of the decimal in the divisor. This is done by multiplying the divisor and the dividend by the same amount, usually a power of ten such as 10, 100 or 1000. For example, if the division question is 5.32/5.6, you would multiply the divisor and dividend by 10 to get the equivalent division problem, 53.2/56. Completing this division will result in the exact same quotient as the original (try it on your calculator if you don't believe us). The main reason for completing decimal division in this way is to get the decimal in the correct location when using the U.S. long division algorithm.

A much simpler strategy, in our opinion, is to initially ignore the decimals all together and use estimation to place the decimal in the quotient. In the same example as above, you would complete 532/56 = 95. If you "flexibly" round the original, you will get about 5/5 which is about 1, so the decimal in 95 must be placed to make 95 close to 1. In this case, you would place it just before the 9 to get 0.95. Combining this strategy with the one above can also help a great deal with more difficult questions. For example, 4.584184 ÷ 0.461 can first be converted the to equivalent: 4584.184 ÷ 461 (you can estimate the quotient to be around 10). Complete the division question without decimals: 4584184 ÷ 461 = 9944 then place the decimal, so that 9944 is about 10. This results in 9.944.

Dividing decimal numbers doesn't have to be too difficult, especially with the worksheets below where the decimals work out nicely. To make these worksheets, we randomly generated a divisor and a quotient first, then multiplied them together to get the dividend. Of course, you will see the quotients only on the answer page, but generating questions in this way makes every decimal division problem work out nicely.

## Horizontally arranged decimal division

These worksheets would probably be used for estimating and calculator work.

## Order of Operations with Decimals Worksheets

Order of operations with decimals.

The order of operations worksheets in this section actually reside on the Order of Operations page, but they are included here for your convenience.

## Order of Operations with Comma Decimals

## Order of operations with decimals & fractions mixed

Copyright © 2005-2023 Math-Drills.com You may use the math worksheets on this website according to our Terms of Use to help students learn math.

## Real-life problems, working with decimals

Common Core Standards: Grade 4 Measurement & Data , Grade 4 Number & Operations in Base Ten , Grade 5 Number & Operations in Base Ten

CCSS.Math.Content.4.MD.A.2, CCSS.Math.Content.4.NBT.B.5, CCSS.Math.Content.5.NBT.B.7

This worksheet originally published in Math Made Easy for 5th Grade by © Dorling Kindersley Limited .

## Related worksheets

Real-life problems, working with decimals #2, real-life problems: money, adding decimals, 5th grade, subtracting decimals.

Yes! Sign me up for updates relevant to my child's grade.

Please enter a valid email address

Thank you for signing up!

Server Issue: Please try again later. Sorry for the inconvenience

Special November offer - 7 days free unlimited access to all premium content Try Premium

## Decimals word problems

Decimals word problems worksheets.

## Filter by Grade:

Filter by subject:, smart practice.

Decimal Place Value

Ordering Decimals

Rounding Decimals

- Varsity Tutors
- K-5 Subjects
- Study Skills
- All AP Subjects
- AP Calculus
- AP Chemistry
- AP Computer Science
- AP Human Geography
- AP Macroeconomics
- AP Microeconomics
- AP Statistics
- AP US History
- AP World History
- All Business
- Business Calculus
- Microsoft Excel
- Supply Chain Management
- All Humanities
- Essay Editing
- All Languages
- Mandarin Chinese
- Portuguese Chinese
- Sign Language
- All Learning Differences
- Learning Disabilities
- Special Education
- College Math
- Common Core Math
- Elementary School Math
- High School Math
- Middle School Math
- Pre-Calculus
- Trigonometry
- All Science
- Organic Chemistry
- Physical Chemistry
- All Engineering
- Chemical Engineering
- Civil Engineering
- Computer Science
- Electrical Engineering
- Industrial Engineering
- Materials Science & Engineering
- Mechanical Engineering
- Thermodynamics
- Biostatistics
- College Essays
- High School
- College & Adult
- 1-on-1 Private Tutoring
- Online Tutoring
- Instant Tutoring
- Pricing Info
- All AP Exams
- ACT Tutoring
- ACT Reading
- ACT Science
- ACT Writing
- SAT Tutoring
- SAT Reading
- SAT Writing
- GRE Tutoring
- NCLEX Tutoring
- Real Estate License
- And more...
- StarCourses
- Beginners Coding
- Early Childhood
- For Schools Overview
- Talk with Our Team
- Reviews & Testimonials
- Press & Media Coverage
- Tutor/Instructor Jobs
- Corporate Solutions
- About Nerdy
- Become a Tutor

## Word Problems Involving Decimals

When you get a word problem that involves adding or subtracting decimals , it's usually a good idea to rewrite all the numbers with the same number of decimal places, so you don't get confused.

Joey, Keith, and Eli have a combined height of 7 meters. If Joey is 2.31 meters tall and Eli is 2.6 meters tall, how tall is Keith?

First, rewrite all the numbers with the same number of decimal places.

Joey, Keith, and Eli have a combined height of 7.00 meters. If Joey is 2.31 meters tall and Eli is 2.60 meters tall, how tall is Keith?

Now write the equation.

2.31 + 2.60 + k = 7.00 where k is the height of Keith in meters.

Combine like terms.

4.91 + k = 7.00

Subtract 4.91 from each side.

Therefore, Keith is 2.09 meters tall.

This rewriting with the same number of digits may not be so important if the problem requires you to multiply decimals or divide them. But in any case, you should check your answer at the end to make sure it makes sense. A small mistake can cause your answer to be off by a factor of ten or one hundred... or worse!

James works at an Indian sweet shop. He needs to fill boxes with 0.3 kilograms of coconut barfi each. If he has 8 kilograms of coconut barfi, how many boxes can he fill?

This is a division problem: we need to find how many times 0.3 kilograms goes into 8 kilograms.

8 ÷ 0.3 = 26. 6 ¯

Since the question asks for the number of boxes he can fill , the decimal part of the answer can be ignored. James can fill 26 boxes, with a little bit of barfi left over.

## IMAGES

## VIDEO

## COMMENTS

These free decimal worksheets start with the conversion of simple fractions (denominators of 10 or 100) to/from decimals and progress to the addition, subtraction, multiplication and division, including long division, of multi-digit decimals. Latter worksheets include rounding and r.

These grade 5 math word problems involve the addition, subtraction and multiplication of decimal numbers with one or two decimal digits. Some problems may have more than 2 terms, include superfluous data or require the conversion of fractions with denominators of 10 or 100. Worksheet #1 Worksheet #2 Worksheet #3 Worksheet #4.

On this page, you will find Decimals worksheets on a variety topics including comparing and sorting decimals, adding, subtracting, multiplying and dividing decimals, and converting decimals to other number formats. To start, you will find the general use printables to be helpful in teaching the concepts of decimals and place value.

This math worksheet asks your child to solve word problems that involve adding and multiplying decimals. MATH | GRADE: 4th, 5th Print full size Skills Adding decimals, Multiplying decimals, Solving word problems Common Core Standards: Grade 4 Measurement & Data, Grade 4 Number & Operations in Base Ten, Grade 5 Number & Operations in Base Ten

Welcome to our page for problems with decimal numbers! Here you will find interactive practice and printable worksheets to practice solving word problems involving decimal numbers, such as problems with money, problems with real-life data, and other problems and challenges which include decimal numbers. Try to solve our word problems and ...

Summary: In this lesson we learned how to solve word problems involving decimals. We used the following skills to solve these problems: Estimating decimal products; Multiplying decimals by whole numbers; Multiplying decimals by decimals; Estimating decimal quotients; Dividing decimals by whole numbers; Rounding decimal quotients; Dividing ...

Word Problems Involving Decimals. When you get a word problem that involves adding or subtracting decimals , it's usually a good idea to rewrite all the numbers with the same number of decimal places, so you don't get confused. Example 1: Joey, Keith, and Eli have a combined height of 7 7 meters.